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ABSTRACT

This paper presents a novel system for automatic assessment
of pronunciation quality of English learner speech, based on
deep neural network (DNN) features and phoneme specific
discriminative classifiers. DNNs trained on a large corpus
of native and non-native learner speech are used to extract
phoneme posterior probabilities. A part of the corpus in-
cludes per phone teacher annotations, which allows training
of two Gaussian Mixture Models (GMM), representing cor-
rect pronunciations and typical error patterns. The likelihood
ratio is then obtained for each observed phone. Several mod-
els were evaluated on a large corpus of English-learning stu-
dents, with a variety of skill levels, and aged 13 upwards. The
cross-correlation of the best system and average human anno-
tator reference scores is 0.72, with miss and false alarm rate
around 19%. Automatic assessment is 81.6% correct with a
high degree of confidence. The new approach significantly
outperforms spectral distance based baseline systems.

Index Terms— Pronunciation assessment, Computer-
Assisted Language Learning, DNN-GMM, binary classifier.

1. INTRODUCTION

As automatic assessment tools permeate teaching method-
ologies, reliable automatic assessment of English learner
speech is of increasing interest. Interactive language learn-
ing tools incorporate a variety of approaches, but assessment
of pronunciation quality remains a particularly challenging
task, especially with adolescent students. Approaches to
computer-assisted pronunciation training were reviewed in
[1, 2], and use a variety of metrics designed to assess pronun-
ciation at the fine-grained phonetic level [3]. Nonetheless,
studies in this area tend to score learners’ speech on longer
time-intervals, reporting assessments in units of words [4, 5]
or longer, e.g. per-sentence or per-student measures as in [6].

This paper describes a method for phone-level pronuncia-
tion error detection developed as part of a research project on
language learning for Dutch learners of English. The project
has collected a large corpus of classroom recordings which
is described in more detail below. Our approach is similar
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to that of [4, 5] in that a student’s attempt to pronounce a
given phrase is compared directly against an audio example
provided by their teacher.

Our proposed method produces a phoneme-level assess-
ment, which is a far more challenging task than word, sen-
tence or student level assessment. We introduce a binary er-
ror classification regime that allows an efficient pronuncia-
tion assessment, and which benefits from advanced acous-
tic modelling with deep neural networks (DNNs). The new
method is also computationally efficient, as it uses DNN fea-
tures and GMM-based binary classification rather than auto-
matic speech recognition, as recent related work describes [7].
The cross-correlation of our best system and average human
annotator reference scores is 0.72, with miss and false alarm
rate around 19%. Automatic assessment is 81.6% correct with
a high degree of confidence.

2. PRONUNCIATION ASSESSMENT

The objective is to assess the pronunciation quality of an un-
known student utterance, Us. It is assumed that a reference
utterance Ut exists, spoken by a teacher. The system then out-
puts a vector S = {si} with a pronunciation quality assess-
ment score for each of the M phonemes in Us. By design,
teacher and student utterances have the same word content,
Ws = Wt. Moreover, a proficient learner should exactly
match their teacher’s phonetic sequence, Ps = Pt.

Given two recordings of the same text prompt – one from
the student, Os, and one from the teacher, Ot – we would like
to compute the probability that the learner recording mimics
the pronunciation in the teacher reference. Alternatively one
can ask if the teacher’s reference is a good predictor for the
student utterance, i.e. we would like to compute P (Os|Ot).

With the reference Ot, the word Wt and the phonetic
Pt sequences are also determined. Hence, P (Os|Ot) can be
written as

P (Os|Ot) =
P (Os,Wt,Pt,Ot)

P (Wt,Pt,Ot)
(1)

For estimating the above we use the fact that teacher and stu-
dent words are the same, i.e Wt = Ws = W, but also
assume that the two phonetic sequences are identical, Pt =
Ps = P. As P (P,W,Ot) depends only on the reference



Set name Use Acquisition # talkers Age # files # hours

INAph 1–2 GMM training Apr 2013 238 13+ 6,252 3.05
INAph 3–6 GMM test and regression tree training Apr 2013 222 13+ 6,640 2.99
INT DNN and acoustic model training May 2013 598 13+ 88,697 46.49
INY Pronunciation reference (Ut) Dec 2013 8 23+ 1,869 1.68

Table 1. ITSLanguage data subsets. Annotated learner recordings in INA are split into two portions of around 3 hours duration
each. Learner material in INT is used in training, and INY contains teacher recordings used as pronunciation references.

segmentation, it is constant for every similar utterance of the
learner and (1) can be approximated as

P (Os,Wt,Pt,Ot)

P (Wt,Pt,Ot)
∝ P (P)P (Os,Ot|P). (2)

The above phoneme sequence prior is constant for all obser-
vations. Assuming segmentation information for phonemes,
P = {ri}, both student and teacher feature sequences can be
split into the phone-related sets:

P (Os,Ot|P) =

M∏
i=1

P (Oi
s,O

i
t|ri) (3)

The paired sets, Oi
s and Oi

t, are normally of different length.
In order to give each realisation of the phone the same im-
portance, the duration is normalised to a fixed length L. The
simplest solution might set L = 1 and chose, for example, ei-
ther the central feature vector, Oi = oi,central or an average
of the feature vectors within the phone ri along each dimen-
sion. If the feature domain is assumed to be continuous along
each dimension (such as in the posterior features domain), an-
other solution would be to resample or interpolate the values
on each dimension to achieve feature sets with same length L,
e.g. Oi,L

s and Oi,L
t with L = 20. Each element of the product

in (3) can be thus modelled as a phoneme-dependant mixture
of Gaussians (GMMi).

The problem then can be turned into a binary classifi-
cation problem, where phoneme-level scores for each stu-
dent utterance Os are computed. For pairwise aligned data,
Oi,L = [Oi,L

s ,Oi,L
t ], each student’s phone is judged to be

well pronounced (C=correct) when P (C=correct|Oi,L) >
P (C=error|Oi,L). This is equivalent to

P (Oi,L|C=correct)
P (Oi,L|C=error)

>
P (C=correct)

1− P (C=correct)
(4)

where the right hand side of (4) serves as a threshold T , which
depends on the degree of proficiency of the learners.

3. THE ITSLANGUAGE DATASET

The dataset underpinning this work comprises recordings of
native-speakers and learners of English, a portion of which
has mispronunciation annotated at a phonetic level.

Comparison vs. Agreement CC vs. Agreement CC

a1 a2 0.858 0.434 R 0.947 0.816
a2 a3 0.782 0.412 R 0.911 0.649
a3 a1 0.818 0.523 R 0.871 0.678

Table 2. Inter-annotator analysis. Left: pairwise compar-
isons showing Agreement (where annotators scores match)
and cross-correlation (CC, which detects similar behaviour
across sequences of values) [3]. Right: Each annotator is
compared with the combined reference, R.

Recordings were made via an online learning environ-
ment, by mainly Dutch pupils in schools across the Nether-
lands. Working individually, the learners read items from an
ordered list of 193 text prompts (both words and short sen-
tences), re-recording each item until satisfied with their pro-
nunciation. Recorded with headset microphones, audio sig-
nals were stored in MS-WAVE format (22.05 kHz, 16-bit).
Many students performed the recording task simultaneously;
a high degree of background noise was therefore present in
each classroom. Metadata for each learner detailed their age,
mother tongue and other languages spoken. Further, their fa-
miliarity with English was quantified in several ways: the
number of years learning, a self-reported confidence score,
and the Common European Framework level of the class in
which the student was enrolled. The learner dataset consisted
of around 80 hours of raw speech. Recordings with prominent
distortion were removed using clipping detection. Items with
partial, missing, or inappropriate speech content were filtered
out by aligning the audio with the known text prompt (using
a British English acoustic model and multiple-pronunciation
dictionary). Table 1 illustrates learner subsets selected for the
current work: around 6 hours (INAph) was selected for phone-
level annotation and c. 46.5 hours (INT) was used in system
development as detailed below.

Pronunciation references (INY) for the 193 test items
were recorded by proficient British English speakers. A high
quality microphone and quiet room were used, but other
conditions replicated those described above. Teacher data
comprised recordings by 4 native-speaking adults (2 male,
2 female) and 4 non-native adults (2 male, 2 female, with
Dutch, Austrian, and Flemish backgrounds).

The annotation dataset (INA) included utterances from as
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Fig. 1. Pronunciation evaluation framework showing stages of annotation (top), training (middle) and assessment (bottom).

many learners as possible, balancing gender, age and learner
level. Around half was annotated at the phone-level (cf.
INAph in Table 1), and half at the word-level (unused in the
present study). These utterances were aligned (allowing for
multiple pronunciations) in order to provide a standard phone
sequence reference, Pa, which was presented alongside the
audiofile in an online annotation tool. Three native Dutch-
speaking phoneticians (a1, a2, a3) acted in the role of teacher
to assess the correctness of the learners’ pronunciation. Ta-
ble 2 quantifies inter-annotator consistency. To handle the
frequent differences of opinion, a combined reference, R,
comprised the average of the three responses for each phone
in each utterance. This located regions that all three anno-
tators considered well-pronounced or mispronounced, and
ambiguous regions causing disagreement. This approach dif-
fers from [5], where items that were not unanimously labelled
were removed. Moreover, it reflects the fact that an ‘error’ re-
sists clear definition since pronunciation varies continuously
between native and unintelligible [2]. A threshold on R then
highlights consistently well- or poorly-spoken phones.

4. EVALUATION FRAMEWORK

The method described in Section 2 was implemented with the
architecture outlined in Figure 1. The observation vector in
(4) has no restriction on the type of features that can be used.
Here, posterior probability features (labelled post) were ex-
tracted, using a deep neural network (DNN). Two DNNs were
tested: DNNUK, a 2-layer network trained on clean British
English pronunciation using the WSJCAM0 corpus [8], and
DNNUK+INT, a 4-layer network trained using both British and
Dutch-accented student audio (WSJCAM0 and INT). As in-
put, both DNNs used a 15-frame span vector with 23 filter-
bank coefficients per frame. The bottleneck layer had 26
coefficients and the output layer had 144 monophone states

(English phone set). Posterior features were extracted from
both the INAph 1–2 learner corpus and one or more teachers
in INY. The three post values measured for each phone state
were combined into a single value. The output of the bot-
tleneck layer (bn) was also used to train the triphone-based
GMM-HMM acoustic model used in alignment.

During training, learner and teacher audio fragments
were fused in a pairwise manner, phone-by-phone, by means
of the annotation sequences Pa. During assessment, a ‘2-
step’ process first obtained a target phone sequence from the
teacher’s audio using a multiple-pronunciation dictionary,
and secondly used this sequence in forced alignment of the
student’s recording. Teacher and learner phones typically
have different durations; same-length feature sets were cre-
ated here by interpolation of the extracted vectors along each
dimension, setting length L = 20. The alignment and fusion
processes thereby generated the phone-comparison vectors
Oi,L = [Oi,L

s ,Oi,L
t ] of (4). In training, these vectors were

then grouped into 47 (one per phone i), giving sets of L×Ni

vectors, where Ni is the number of phone realisations. Each
set was further split using the reference R with a threshold
at 0.5, which provided a binary decision label based on the
annotators’ majority opinion. After this, {Oi,L}CNi

stored all
the correct phone pronunciations, and the mispronunciations
were gathered in {Oi,L}ENi

. These sets were input to the
GMM expectation-maximisation training, allowing computa-
tion of P (Oi,L|C=correct) and P (Oi,L|C=error). In total, 94
GMMi were created, each comprising 64 Gaussian functions.

During assessment, the same feature extraction process
took place, using the 2-step alignment discussed above. The
left side of (4) was then computed using the synchronised fea-
ture set, resulting in a wide range of continuous likelihood
ratio values. These were mapped into the [0,1] interval us-
ing a regression tree which was optimised using the annotated
data of the GMM training, a measure of the time-discrepancy



SYSTEM Ut (gender) Us MAPPING FAR MISS CC ACC F-SCORE NCE

Baseline [D+E+S+∆] INY51 (F) INAph 1–2 reg.tree(INAph 1–2) 0.443 0.365 0.443 0.695 - 0.008

DNNUK+INY51 INY51 (F) INAph 1–2 none 0.239 0.207 0.426 0.763 0.327 N.A.
DNNUK+INY51 INY51 (F) INAph 1–2 reg.tree(INAph 1–2) 0.184 0.193 0.716 0.816 0.388 0.397
DNNUK+INY51 INY51 (F) INAph 3–6 reg.tree(INAph 1–2) 0.252 0.264 0.613 0.747 0.261 0.447
DNNUK+INY51+D INY51 (F) INAph 3–6 reg.tree(INAph 1–2) 0.252 0.262 0.614 0.748 0.262 0.446
DNNUK+INY51+D+∆ INY51 (F) INAph 3–6 reg.tree(INAph 1–2) 0.258 0.255 0.616 0.742 0.260 0.451
DNNUK+INT+INY51+D+∆ INY51 (F) INAph 3–6 reg.tree(INAph 1–2) 0.297 0.275 0.581 0.704 0.229 0.559
DNNUK+INT+MULTI+D+∆ INY51 (F) INAph 3–6 reg.tree(INAph 1–2) 0.288 0.284 0.576 0.712 0.232 0.473

DNNUK+INY51+D+∆ INY52 (M) INAph 3–6 reg.tree(INAph 1–2) 0.250 0.241 0.574 0.751 0.504 0.371
DNNUK+INT+INY51+D+∆ INY52 (M) INAph 3–6 reg.tree(INAph 1–2) 0.291 0.281 0.582 0.710 0.231 0.558
DNNUK+INT+MULTI+D+∆ INY52 (M) INAph 3–6 reg.tree(INAph 1–2) 0.278 0.277 0.587 0.722 0.240 0.470

Table 3. Comparison of phone-level mispronunciation detection scores predicted by the system, S, and marked in the human
annotators’ reference, R. Top: baseline system. Middle: system development using a matched teacher voice for training and
assessment stages of the framework. Bottom: Comparisons using a mis-matched teacher voice.

between teacher and student phone durations (D), and their
differential values (∆). A pronunciation error resulted when
mapped scores fell beneath a threshold whose level sets the
system’s strictness. Here, the rate of undetected mispronunci-
ations (MISS) balanced the well-pronounced phones marked
as errors (false alarm rate, FAR).

5. EXPERIMENTS

The evaluation framework was used to assess learner pronun-
ciation in the (unseen) INAph 3–6 dataset. For this, the system
outcome, S, was compared with the combined human refer-
ence, R, using six common information retrieval indices. Of
these, CC, FAR and MISS were previously defined; addition-
ally, Accuracy (ACC), F-score, and normalised cross-entropy
(NCE) are displayed in Table 3. ACC gives the percentage
of phones that were correctly assessed. The F-score com-
bines recall and precision rates [5]. NCE concerns the mutual
information between the correctness of the mispronunciation
detection and the confidence score in making that decision
[9]. For the perfect system, FAR and MISS values are low,
and CC, ACC, F-score and NCE are high.

The baseline system reported in [10] performed pairwise
comparison of temporal and spectral acoustic features aver-
aged at the phone-level (duration, D, energy, E, and spectral
shape, S). These were combined into a single score in the [0,1]
range using a regression tree as described above.

Table 3 shows the evaluation framework’s improvement
(middle) over the baseline (top), and outlines the relative gains
(or losses) arising as each component is introduced. Anno-
tated learner speech material (Us) is compared against ut-
terances recorded by a single teacher (here, Ut=INY51, fe-
male), simulating the manner in which this learning environ-
ment would be used in the classroom. The proposed sys-
tem uses audio data from the selected teacher to train the
GMMs. System performance is loosely similar to that of

the baseline, even without the regression tree mapping (e.g.,
CC is 0.426 and 0.443 respectively). The performance is
boosted substantially when the regression tree is tuned on stu-
dent utterances used in the GMM training stage (CC=0.716
for INAph 1–2). Importantly, cross-correlation remains high
(CC=0.613) when this system is then tested on unseen learner
audio, i.e. when INAph 3–6 is used for Us, simulating a new
student group. A slight improvement is observed by intro-
ducing D and ∆ as input to the regression tree (CC=0.616).
However, inclusion of the student data in the DNN creation
(DNNUK+INT) brings about a small reduction in performance
(CC=0.581). This arises from the higher diversity of pronun-
ciation captured in the DNN posterior distributions.

An ideal system would allow introduction of a new
teacher without penalty (e.g., Ut=INY52, male, in Table 3,
bottom). However, a drop in performance occurred when
the DNNUK+INY51+D+∆ system was used with INY52. To
lessen the dependency on the training teacher, the GMM was
created using multiple teacher references (MULTI). When a
teacher is involved in both test and training (i.e., Ut=INY51,
female), there is no further benefit from this MULTI con-
dition. However, a different pattern of results emerges for
the mis-matched teacher condition using Ut=INY52, male,
where the MULTI condition gives an improvement in system
performance (CC increases from 0.574 to 0.587).

6. CONCLUSIONS

This paper introduced a novel system for automatic assess-
ment of pronunciation quality of English learner speech,
based on DNN features and phoneme-specific discriminative
classifiers. In this challenging phone-level decision task, one
in which even expert annotators often disagree, the proposed
method achieved good accuracy values with high decision
confidence. Improvements in DNNs and annotation quality
might address the low performance in FAR and MISS.



7. REFERENCES

[1] M. Eskenazi, “An overview of spoken language tech-
nology for education,” Speech Communication, vol. 51,
no. 10, pp. 832–844, Oct. 2009.

[2] S. M. Witt, “Automatic error detection in pronunciation
training: Where we are and where we need to go,” in IS
ADEPT, Stockholm, SE, June 2012, pp. 1–8.

[3] S. M. Witt and S. J. Young, “Phone-level pronunciation
scoring and assessment for interactive language learn-
ing,” Speech Communication, vol. 30, no. 2-3, pp. 95–
108, Feb. 2000.

[4] A. Lee and J. Glass, “A comparison-based approach to
mispronunciation detection,” in SLT 2012, Miami, FL,
Dec. 2012, pp. 382–387.

[5] A. Lee, Y. Zhang, and J. Glass, “Mispronunciation
detection via Dynamic Time Warping on Deep Belief
Network-based posteriorgrams,” in ICASSP 2013, Van-
couver, BC, May 2013, pp. 8227–8231.

[6] T. Cincarek, R. Gruhn, C. Hacker, E. Nöth, and S. Naka-
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