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Abstract
The University of Sheffield (USFD) participated in the
International Workshop for Spoken Language Translation
(IWSLT) in 2014. In this paper, we will introduce the
USFD SLT system for IWSLT. Automatic speech recognition
(ASR) is achieved by two multi-pass deep neural network
systems with adaptation and rescoring techniques. Machine
translation (MT) is achieved by a phrase-based system. The
USFD primary system incorporates state-of-the-art ASR and
MT techniques and gives a BLEU score of 23.45 and 14.75
on the English-to-French and English-to-German speech-to-
text translation task with the IWSLT 2014 data. The USFD
contrastive systems explore the integration of ASR and MT
by using a quality estimation system to rescore the ASR out-
puts, optimising towards better translation. This gives a fur-
ther 0.54 and 0.26 BLEU improvement respectively on the
IWSLT 2012 and 2014 evaluation data.

1. Introduction
In this paper, the University of Sheffield (USFD) system for
the International Workshop on Spoken Language Translation
(IWSLT) 2014 is introduced. USFD participated in English-
to-French and English-to-German SLT tasks. The ASR and
MT systems made use of state-of-the-art technologies. On
the ASR side, two deep neural network systems built on par-
tially different data and different tandem configurations were
used. On the MT side, phrase-based translation models were
built. ASR and MT system integration attempts were made
by using a translation quality estimation system. It consid-
ered the system scores from both ASR and MT, as well as
features extracted from the ASR outputs in source language.
The ASR hypotheses were then rescored based on the pre-
dicted translation quality. This gives performance improve-
ments in terms of BLEU score increase.

In the following, the data used for system training is in-
troduced in §2. §3 and §4 give the details of the ASR and
MT systems. The decoding algorithm and system results are
given in §5. Besides the primary submission, USFD also
submitted contrastive systems which implement system in-
tegration. These systems used a quality estimation module
and performed ASR N -best list rescoring based on predicted
translation quality. This would be described in §6.

2. Data processing and selection
The ASR and MT systems were primarily trained on TED
lecture data [1]. For ASR, TED and the additional data form
two data subsets, on which two systems were trained. For
MT, out-of-domain data after data selection were incorpo-
rated in the training of translation models and target language
models.

2.1. ASR acoustic modelling

Two data sets were used for ASR system training. For the
ease of discussion they are hereinafter referred to as ASR1

and ASR2. The composition of the two data sets is shown in
Table 1.

Table 1: Data for acoustic model training
ASR1 ASR2

Data Hours Data Hours
TED 132 TED 112
LLC 106 AMI+AMIDA+ICSI 165
ECRN 60 ECRN 60

TED serves as a common data set in both ASR1 and
ASR2. Their segmentations in ASR1 and ASR2 differ
slightly and this is explained later. The two data sets are aug-
mented by e-corner lecture data (ECRN) with a duration of
60 hours [2]. ASR1 also contains 106 hours of LLC lecture
data. In ASR2, 165 hours of meeting data from the AMI,
AMIDA and ICSI corpora are added so the trained model
will reflect also generic domains other than lectures [3, 4].

The TED portions in both ASR1 and ASR2 originate
from 734 TED talks published before 31 Dec 2010. Each
talk has a duration of around 15 minutes. Human annota-
tions in the form of subtitles are also available, giving rough
segmentation with segment duration from 3 to 5 seconds and
time accuracy to the nearest second.

Exact segmentations and transcriptions of TED were de-
rived in different ways in ASR1 and ASR2. In ASR1, all seg-
ments from the same talk were merged and the speech was
forced aligned, resegmented before another forced alignment
run determined the final training set. This gave a total of 132
hours of speech for AM training. In ASR2, forced alignment



Table 2: Amount of text data used in different training tasks
in En→Fr translation (#Full data set was used for builing target LM)

Number of words/million
Data Target LM# Source LM Punct TM TM

TED 3.17 3.17 3.17 3.17
News Commentary 4.0 0.9 0.2 0.7
Common crawl 70.7 36.1 3.6 10.8
Gigaword 575.7 271.2 26.3 14.9
Europarl 50.3 10.8 4.3 1.9

was performed on the rough segmentation, after which con-
tagious segments were merged when there was tight silence
at the segment boundaries. A further run of forced alignment
determined the final training set. This gave a total of 112
hours of speech.

To evaluate the performance of different segmentations,
PLP-based state-tied triphone models with cepstral mean and
variance normalisation were trained on these data and decod-
ing was performed on the IWSLT 2010 evaluation data set.
The WERs for the ASR1 and ASR2 settings are 25.7% and
26.2% respectively. When the models are trained directly
on the roughly segmented data (no adjustment of segmenta-
tions), the total duration of training data is 109 hours and the
corresponding WER is 28.1%.

2.2. Language models and MT

Textual data for the training of language models and transla-
tion models were obtained from the affiliated websites of the
IWSLT and WMT evaluations [5, 6]. TED was considered
as the in-domain training data and the full data set was used.
Four out-of-domain (OOD) data sets from News commen-
tary v9, Common Crawl, Gigaword and Europarl v7 were
also used, after a data selection process.

The OOD corpora were selected with the cross en-
tropy difference criterion [7]. Given a sentence xI

1 =
[x1 · · ·xI ] with I words, cross entropy values H(xI

1, ID)
and H(xI

1, OOD) were computed using GID, the ID lan-
guage model (in this case, TED) and GOOD, the OOD lan-
guage model (built on the corpus from which the sentence
was taken). The cross entropy difference (CED) was given
by,

CED(xI
1) = H(xI

1,GID)−H(xI
1,GOOD) (1)

Sentences were ranked by the CED values and 25% of the
sentences with the lowest CED values were selected from
each corpus. Furthermore, CED values were calculated on
sentence batches with increasing sizes. A line search was
done to find the optimal batch giving the minimum CED
value. All data selection was done on the English text. For
data selection to translation model training, the correspond-
ing sentences in the target languages were extracted after se-
lection was done on English sentences.

Table 2 shows the amount of the full text data set, and the

selected text data in different systems in the English→French
translation task. The full data set contains 703.9M words.
They were used for training the target language model in
MT, which was a 5-gram interpolated LM with punctuation
and out-of-vocabulary word modelling, modified Kneser-
Ney smoothing and was in standard ARPA format. The
source language model for ASR was built on the full TED
data set and 25% or 50% of the OOD data, making up to
322.2M words. A monolingual translation model was trained
for punctuation insertion and case conversion. The training
took the full TED data and 5-10% of the OOD data, result-
ing in a total of 37.6M words. The translation model was
trained on the full TED data set and other optimally selected
OOD data sets, where only around 5% of the sentences were
selected. The total number of words is 31.7M.

3. Automatic speech recognition
There are two DNN systems with tandem configurations in
ASR [8]. Bottleneck (BN) features were derived from deep
neural network (DNN)s [4], and GMM-HMM systems were
trained on these bottleneck features. The two tandem sys-
tems were trained on ASR1 and ASR2 data respectively (Ta-
ble 1). Different portions of data were used in different stages
of training. Let DNN1 and DNN2 denote the two DNN sys-
tems for ASR1 and ASR2. DNN1 was trained on TED data
only. DNN2 was trained on TED and AMI+AMIDA+ICSI
data only. The remaining data listed in Table 1 were added
to the training pool in the GMM-HMM training stage.

DNN1 has 4 hidden layers, each having 1,745 hidden
units. The BN layer is placed just before the output layer
and has 26 units. The output layer has 4,320 units. DNN2

has 5 hidden layers, with the first 3 layers having 1,745 units
and the fourth hidden layer having 65 units. A BN layer is
placed just before the output layer and has 39 units. The out-
put layer has 5,691 units.

Both the DNNs were trained using log filter-bank outputs
and concatenating 31 adjacent frames, which were decorre-
lated using DCT to form a 368-dimensional feature vector.
The filter-bank outputs were mean and variance normalised
at the speaker level. Global mean and variance normalisation
was performed on each dimension before feeding the input
for training the DNN. The GMM-HMM systems trained us-
ing the BN features were different. The model for ASR1 was
trained on the concatenated features with the 26-dimension
BN features from DNN1 and the 39-dimension PLP features.
The model for ASR2 was trained on the 39-dimension BN
features from DNN2. Both the GMM-HMM models were
trained as tied-state triphone systems with the final models
having 16 mixture Gaussians per state.

All systems are vocal tract length normalised (VTLN). In
the training stage, a PLP system was used to obtain the warp
factors for each speaker. Then the filter-bank and PLP fea-
tures were VTLN-warped, which were in turn used for DNN
and GMM-HMM training in the tandem configuration. In the
decoding stage, a non-VTLN DNN and GMM-HMM tandem
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Figure 1: System diagram for multi-pass ASR decoding.

system trained on ASR2 data replaced the PLP system for the
derivation of warp factors.

To improve the performance of the acoustic model, mini-
mum phone error (MPE) training was performed using the
lattices which were generated using a uni-gram language
model [9].

Language models for ASR are all interpolated LMs built
on the English text data described in Table 2 and tuned
on IWSLT 2010 dev and eval data. 2-gram and 4-gram
ARPA language models were trained for lattice generation
and expansion. The 4-gram LM was pruned with a threshold
10−10 and a weighted-finite-state transducer (WFST) was
constructed for fast decoding in the pre-final passes in the
ASR systems.

All ASR LMs were based on a word-list with a 60k word
vocabulary extracted based on our standard English ASR in-
ventory and the English part of the TED MT training data for
IWSLT 2014 [3, 5]. Pilot ASR experiments on the IWSLT
2011 and 2012 eval data show the drop of perplexity with
the addition of Common crawl and Gigaword data. For these
two corpora, the rate of data selected for LM building was
set to 50%, while the rate for other OOD corpora was kept
25%. This made the total number of words 322.2M as shown
in Table 2.

Pronunciation probabilities were incorporated in final
stage decoding [10]. These probabilities were extracted
based on the Viterbi alignment of the phoneme level tran-
scription of the ASR1 training data. When a word allowed
multiple pronunciations, the frequency of each pronunciation
was calculated and stored. These frequencies were then ap-
plied to the words in the decoding dictionary for words that
appeared in both training and decoding stages. Words with
multiple pronunciations appearing only in the decoding stage
were given equal probability.

4. Machine translation
A phrase-based model using MOSES [11] in a standard set-
ting was employed. For phrase extraction all of the TED data
(3.17 million words) was used. Following previous findings
[12], data selection via a cross-entropy difference criterion
(detailed in §2.2) was used to select the optimal batch of

the OOD data, which amounts to about 5% of the total data
or 30.58M words. The phrase length was limited to 5 and
word-alignment was obtained with FASTALIGN [13]. Lexi-
calised reordering models were trained using the same data.
For language modelling, we used the complete sets of OOD
data (i.e. no data selection). 5-gram LMs were trained us-
ing LMPLZ [14]. 100-best MIRA tuning was employed [15].
For the English-to-French system, tuning was done on the
IWSLT 2010 development and evaluation data with a total
of 2,551 sentences. For the English-to-German system, tun-
ing was done on the IWSLT 2010 development data with 887
sentences.

In SLT, the input to the MT system was ASR output,
which typically lacks casing and punctuation. Following pre-
vious work [16, 17], a monolingual translation system was
trained to recover casing and punctuation from the ASR out-
put, thus producing source sentences which are more ade-
quate for translation. The training data for this monolingual
MT system was obtained by pre-processing an actual corpus
of the source language to form pseudo ASR outputs, which
contained no case and punctuation information. Numbers,
symbols and acronyms were also converted to their verbal
forms with lookup tables. We then used this synthesised cor-
pus of pseudo ASR as the source, and the original corpus as
the target of our monolingual MT. The monolingual transla-
tion system was trained on 37.6M words (Table 2). It per-
formed monotonic translation with phrases of as long as 7
words.

5. Decoding

The evaluation systems for ASR and MT are multi-pass sys-
tems with resource optimisation and environment manage-
ment capabilities [11, 18]. The ASR is a two-stream multi-
pass system. It is illustrated in Figure 1. The two streams
ASR1 and ASR2 differ by the acoustic model training data
(detailed in Table 1) and also the tandem configurations (de-
tailed in §3). Both streams follow the same routine along
the multi-pass decoding system. In pass 1, a unified de-
coding result was generated using a non-VTLN DNN and
GMM-HMM tandem system with cepstral mean and vari-
ance (CMVN) normalisation trained on ASR2 data. These



Table 3: Tree-search and WFST decoder
Tst11 Tst12

Decoder WER RT WER RT
Tree-search 23.7% 18.4 27.0% 19.8
WFST 23.7% 3.0 27.0% 3.3

hypothesis transcripts were used for inferring the warp fac-
tors. The filterbank (for both ASR1 and ASR2) and PLP
(for ASR1 only) features were then warped and CMVN nor-
malised, and the system branched off into two streams with
two VTLN decoders trained on ASR1 and ASR2 data respec-
tively.

After pass 2 decoding, speaker-based MLLR cross adap-
tations were carried out. The transcripts from ASR1 was used
for the model transformation in ASR2 system and vice versa.
The number of regression classes was set to 16. When pass 3
decoding was done, MLLR self adaptations were performed.
The number of regression classes was also set to 16.

All pre-final stage decoding made use of weighted finite
state transducers (WFSTs) for fast implementation. In a pi-
lot experiment, PLP systems with heteroscedastic linear dis-
criminant analysis (HLDA) were trained on the ASR2 data
[19]. WFST decoding with a pruned 4-gram grammar net-
work was compared with the standard tree search with an
unpruned 3-gram LM. The WER and real-time factor (RT)
on IWSLT 2011 evaluation and IWSLT 2012 evaluation data
are shown in Table 3. WFST was shown to achieve the same
performance as tree-search decoding, with much faster de-
coding speed.

In the final stage, acoustic and language model rescoring
were performed. Base lattices were generated with 2-gram
LM pruned with a threshold 10−10. Lattice expansion was
done with 4-gram unpruned language models. Three settings
were tried and the results were compared,

(i) Language model rescoring with the 4-gram LM
(ii) Considering pronunciation probability (Pron. prob.)

on top of (i)
(iii) Acoustic and language model rescoring with the set-

ting of (ii)
ASR performance in terms of WER are shown in Table

4. The initial non-VTLN system gave WER of 16.9% and
17.7% on IWSLT 2011 and 2012 data respectively. Moving
towards the VTLN systems, when ASR1 and ASR2 branched
off, it is observed that the ASR1 model gave 1.0% to 1.4%
lower WER than the ASR2 model. This is because the data
in ASR1 had a better match in terms of domain. Incremental
performance gains can be observed in individual steps, par-
ticularly MPE, cross-adaptation and language model rescor-
ing. The WER difference between ASR1 and ASR2 dimin-
ished to 0.4-0.5% after all optimisation steps. After system
combination, the final WER is 21-25% relatively lower com-
pared with the initial system.

MT Decoding was performed with cube pruning [20]
both in tuning and testing. Decoding was done with the min-

Table 4: WER of the multi-pass ASR systems
Tst11 Tst12

ASR system ASR1 ASR2 ASR1 ASR2

Non-VTLN – 16.9% – 17.7%
+VTLN 15.4% 16.4% 16.4% 16.8%
+MPE 14.7% 15.7% 16.0% 16.1%
+Cross-adapt 14.0% 14.9% 14.2% 14.8%
+Self-adapt 14.0% 15.0% 14.2% 14.7%
+LM rescoring 13.4% 14.5% 13.5% 14.2%
+Pron. prob. 13.3% 14.2% 13.4% 14.0%
+AM rescoring 13.3% 13.8% 13.4% 13.7%

ROVER —13.3%— —13.2%—

Table 5: MT system performance on eval data
BLEU(c)

Language pair Dev10 Tst12
(MT with true transcript)
En→Fr 40.9
En→De 21.5

(Monolingual translation)
En(pseudo ASR)→En 88.0
En(ASR)→En 69.0

(SLT)
En(ASR)→En→Fr 31.7
En(ASR)→En→De 16.8

imum Bayes risk criterion and reordering over punctuations
was forbidden. To restore the correct case of the output the
truecasing heuristic was employed. The same set of standard
techniques was applied on En→Fr and En→De translation.

The MT system was tested on IWSLT 2010 development
data and 2012 evaluation data, and the results are shown
in Table 5. Performance are shown in terms of cased and
punctuated BLEU scores. When given the reference tran-
script, the MT system gave 40.9 and 21.5 BLEU score for
MT tasks in En→Fr and En→De respectively. The mono-
lingual translation system (§4) restored case and punctuation
information. It was tested on pseudo ASR and real ASR out-
put and yielded 88.0 and 69.0 BLEU score. Finally in the
SLT setting, the decoded ASR result was fed to the mono-
lingual translation system and the output were subsequently
translated. The BLEU score is 31.7 and 16.8 for SLT tasks
in En→Fr and En→De respectively.

In Table 6, the official IWSLT 2014 evaluation perfor-
mance in terms of BLEU and TER (cased, punctuated and
non-case, non-punctuated) for the USFD primary system is
shown.

Table 6: Primary SLT system performance (Tst14)
Language pair BLEU(c) TER(c) BLEU TER
En→Fr 23.45 59.94 24.14 58.97
En→De 14.75 70.15 15.24 69.15
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Figure 2: System integration with ASR and MT

6. System integration
The USFD primary system is a pipeline SLT system in which
1-best ASR result was directly fed to the MT system. System
integration experiments were tried in the En→Fr SLT task
and the results were submitted as contrastive systems. Fig-
ure 2 depicts the integrated system and its comparison with
the pipeline system. In the integrated system, ASR system
hypotheses are expanded in the form of lattices, confusion
networks or N -best lists. A quality estimation (QE) module
evaluated and rescored the ASR outputs before they were fed
to the MT system.

In our implementation, 10-best outputs from the ASR
system on the IWSLT 2011 evaluation data were used for QE
training. The QE module derived 117 QuEst [21, 22] features
from each sentence to describe its linguistic, statistical prop-
erties as well as the statistics from the ASR and MT models.
Out of the 117 features, top 58 features were selected us-
ing the Gaussian Process (GP) with RBF kernel as described
in [23]. Further, GP was used to learn the relationship be-
tween the selected features and the translation performance
of the sentence (in this case, sentence-based METEOR score)
[24]. During testing, the estimated translation performance
was used to rescore the 10-best ASR output. Details of the
integrated system were described in [25].

Table 7: Contrastive SLT system performance (En→Fr)
Setting Tst12 Tst14
Contrastive 1 (baseline) 31.33 23.18
Contrastive 2
(+ 10-best list rescoring) 31.51 23.27
Contrastive 3
(+ ASR confidence-informed rescoring) 31.87 23.44

The ROVER combination of ASR1 and ASR2 systems
only provided 1-best output. In the integration experiment,
the 10-best output from ASR1 was used instead.

Performance of the contrastive systems in terms of cased
and punctuated BLEU score is shown in Table 7. Contrastive

1 result is from the baseline system with pipeline setting.
Contrastive 2 and 3 show the results of two different system
integration settings. The baseline system gave BLEU scores
31.33 and 23.18 on IWSLT 2012 and IWSLT 2014 data. The
baseline numbers are inferior to the primary system number
(IWSLT 2012: 31.7; IWSLT 2014: 23.45) as shown in Ta-
ble 5 and 6. This is because the baseline here did not benefit
from ASR system combination.

Rescoring gives 0.18 and 0.09 BLEU improvements to
IWSLT 2012 and IWSLT 2014 data respectively. By in-
specting the results, it was found that rescoring generally had
higher effectiveness for the sentences with low ASR confi-
dence. Therefore, a confidence threshold was set, and rescor-
ing was only performed when the ASR confidence dropped
below this threshold. For IWSLT 2012 data, optimality was
reached when 55% of the sentences were selected by this
confidence criteria to rescore, resulting a further 0.36 BLEU
score gain. This threshold was applied on IWSLT 2014 data,
a 0.17 BLEU score gain was observed.

7. Summary
In this paper, the USFD SLT system for IWSLT 2014 was
described. Automatic speech recognition (ASR) is achieved
by two multi-pass deep neural network systems with slightly
different tandem configurations and different training data.
Machine translation (MT) is achieved by a monolingual
phrase-based monotonic translation system which recovers
case and inserts punctuation, followed by a bilingual phrase-
based translation system. The USFD contrastive systems ex-
plore the integration of ASR and MT by using a quality es-
timation system to rescore the ASR outputs, optimising to-
wards better translation. This gives noticeable BLEU im-
provement on the IWSLT 2012 and 2014 evaluation data.
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