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Abstract
In the phonotactic approach for language recognition, a phone
tokeniser is normally used to transform the audio signal into
acoustic tokens. The language identity of the speech is mod-
elled by the occurrence statistics of the decoded tokens. The
performance of this approach depends heavily on the quality of
the audio tokeniser. A high-quality tokeniser in matched con-
dition is not always available for a language recognition task.
This study investigated into the performance of a phonotactic
language recogniser in a resource-constrained setting, following
NIST LRE 2015 specification. An ensemble of phone tokenis-
ers was constructed by applying unsupervised sequence training
on different target languages followed by a score-based fusion.
This method gave 5−7% relative performance improvement to
baseline system on LRE 2015 eval set. This gain was retained
when the ensemble phonotactic system was further fused with
an acoustic iVector system.
Index Terms: Language recognition, phonotactics, multilin-
gual adaptation.

1. Introduction
In a spoken language recognition (SLR) task, an automatic sys-
tem is used to infer the language identity of the given acoustic
signal [1]. Different types of information from a speech signal
can be used to identify languages. Standard SLR methods can
be categorised by the features they use. The two most popular
SLR approaches are the acoustic-phonetic and phonotactic ap-
proaches [2, 3, 4]. In the acoustic-phonetic approach, low-level
acoustic features such as Mel-frequency cepstral coefficients
(MFCC)[5], or shifted-delta cepstral coefficient (SDC)[6] are
extracted, on which statistical models such as Gaussian mixture
models are trained to model languages [7, 8]. For the phono-
tactic approach, an ASR-style tokeniser is required to convert
the speech signal into graphs (lattices) of discrete tokens, most
notably phonemes. The occurrence patterns of these tokens dif-
fers from target languages, thus allowing for modelling and
language classification [2, 8, 9]. Acoustic SLR is often be-
lieved to give better results. Nevertheless, with detailed control
of tokeniser quality and adequate modelling, phonotactic SLR
could outperform its counterpart in certain situations [10]. Fur-
thermore system fusion is an important necessity for language
recognition, and having a second similar performing system al-
lows further performance gain. This was shown most recently
for some evaluation systems in LRE 2015 [11].

This paper focuses on the phonotactic approach in SLR.
From the literature, a number of major advances in the field
can be observed. For instance, clustering and adaptation were
proposed to address the issue of sparse statistics of higher-order
N -grams, especially for short utterances [12, 13]. Soft counts

from phone lattices [14], phone posteriograms [15] or multi-
layer perceptron features [16] were used to generate smooth
statistics for language recognition. The use of parallel tokenis-
ers has long been a useful trick to boost performance [2, 17].
Regardless whether the 1-best phone sequence or a phone pos-
teriogram vector is used, with parallel tokenisers the speech data
is decoded in multiple different ways giving a diverse view for
subsequent language recognition model training. The combina-
tion of different streams of tokeniser results often provide gains
in the performance.

The National Institute of Standards and Technology (NIST)
has conducted a number of evaluations of automatic language
recognition technology. Recent NIST language recognition
evaluations were held in 2011 and 2015 [18, 19]. These eval-
uations focus on languages that are similar to each other and
frequently mutually intelligible, e.g. dialectal variants [19]. In
NIST LRE 2015, a new requirement on Fixed Training Data for
all components in the LR system was introduced that created
extra challenges to system building. For tokeniser training a
300-hour Switchboard data set with phonetic transcriptions and
alignments was permitted to be used. These data were mono-
lingual (English) conversational telephone speech only. Lan-
guage, channel and style mismatch between that data and the
LR training and test data was well known.

Experiments for this paper investigate how to make best
use of the tokeniser training data for a phonotactic language
recognition task in a resource constrained setting (i.e. no other
transcribed training data can be used). Without the availability
of extra transcribed data, the Deep Neural Netowrk (DNN) to-
keniser was adapted (fine-tuned) in an unsupervised manner us-
ing the sequence training criterion towards different languages.
Adaptation was performed using multi-lingual LR training data.
The multiple adapted tokenisers operated in parallel for phono-
tactic language recogniser training and testing. The results were
ultimately combined at the score level. Despite having the sin-
gle source of transcribed text, after DNN adaptations the ensem-
ble of phonotactic LR systems demonstrated minDCF ’s which
were 5− 7% lower than those obtained when using a single un-
adapted phonotactic tokeniser. This gain was retained when the
system was fused with an acoustic iVector language recognition
system.

This work is related to previous work on phonotactic lan-
guage recognition discussed above. We have built on the idea
of using different tokenisers trained in multiple languages [17].
Here we have employed a standard phonotactic LR setup us-
ing normalised tri-gram phone count. The focus has been put
on the adaptation of tokeniser from a single data source where
multi-lingual transcribed data is not available. Related work
on adaptation can be found in [20], where the DNN is adapted
to different speakers using sequence training criterion. To the



best of our knowledge, there is no work in the literature that
addresses training data constraints in the context of phonotactic
language recognition.

2. Tokeniser adaptation
The tokeniser used in language recognition is a DNN phone
tokeniser implemented in a feed-forward hybrid setting. As-
sume a dataset with a total of U utterances each indexed
u (i.e. u = [1, 2, . . . , u, . . . , U ]). Each utterance has dif-
ferent duration and is represented by the number of frames
([T1, T2, . . . , Tu, . . . , TU ]). An observation at time t in utter-
ance u is denoted by out. With the reference state label sut, a
baseline DNN tokeniser was trained on the cross-entropy crite-
rion at the frame level. yut(sut) denotes the DNN output poste-
rior probability estimate at time t for utterance u, which corre-
sponds to the reference target state sut. Cross-entropy training
minimises FCE where

FCE = −
U∑

u=1

Tu∑
t=1

log yut(sut). (1)

To adapt a tokeniser to different target languages, the
weights of the DNN was retrained (fine-tuned) on multi-lingual
(out-of-domain) data in an unsupervised manner. This could
potentially be considered as problematic as high error rates of
target sequences will be reaffirmed. The original tokeniser was
applied on the multi-lingual LR training data to generate a 1-
best decode sequence Ŝu = (ŝu0,· · · , ŝut,· · · ,ŝuT ). There is
no constraint on what kind of objective function the adapted
tokeniser should be optimised. In this paper, minimisation of
state-level Minimum Bayes Risk (sMBR) was chosen to be the
objective function [21], which is defined as,

FsMBR = −
∑
u

∑
S

p(S|Ou)A(S, Ŝu) (2)

A(S, Ŝu) is an accuracy term to compute the number of
correct state labels corresponding to the state sequence S with
respect to the first pass hypothesis Ŝ. The objective function
aims to minimise Bayes risk at state-level (i.e. maximised accu-
racy). The posterior probability was computed in the utterance
level to achieve robust estimation. [22].

3. Experimental setup
This study focuses on phonotactic language recognition, which
is considered as a two-stage process – phone tokenisation and
language recognition. Data usage and systems are designed to
conform to this two-stage system regime.

3.1. Data

The training and development data used in this study comes
mainly from three corpora. The Switchboard 1 (SWB) con-
tains transcribed English conversational telephone speech data
with a total duration of 302 hours including silence. It was used
for the training of the source phone tokenisers. In addition, two
multi-lingual datasets (LDC2015E87, LDC2015E88) were used
for language recogniser training [19]. LDC2015E87 comprises
conversational telephone speech from the CallHome and Call-
Friend collections, in Egyptian Arabic, Standard Mandarin and
US English. LDC2015E88 comprises data in seventeen further
target languages as used in NIST LRE 2015. The amount of
data for different languages varies from 0.4 hours to 63 hours

Table 1: Target languages and raw amount of training data in
NIST LRE 2015

Cluster Target languages
Arabic Egyptian (ara-arz, 159h), Iraqi (ara-acm, 57h),

Levantine (ara-apc, 63h), Maghrebi (ara-ary, 57h),
Modern Standard (ara-arb, 3h)

English British (eng-gbr, 0.4h), General American (eng-usg, 159h),
Indian (eng-sas, 3h)

French West African (fre-waf, 6h), Haitian Creole (fre-hat, 2h)
Slavic Polish (qsl-pol, 26h), Russian (qsl-rus, 5h)
Iberian Caribbean Spanish (spa-car, 44h),

European Spanish (spa-eur, 7h),
Latin American Spanish (spa-lac, 6h),
Brazilian Portuguese (por-brz, 0.7h)

Chinese Cantonese (zho-yue, 4h), Mandarin (zho-cmn, 107h),
Min (zho-cdo, 7h), Wu (zho-wuu, 7h)

in LDC2015E88, and the data amount in LDC2015E87 is 159
hours for Egyptian Arabic and US English respectively and 107
hours for Standard Mandarin (Table 1). In this paper, the two
multi-lingual data sets were used for unsupervised adaption of
tokenisers.

This study proposes to improve the poor performance
of phonotactic LR systems, thus tests were focused on 3-
second and 10-second data only. The language recogni-
tion systems were tested on an internal evaluation data set
(HELDOUT) constructed by extracting 10% from LDC2015E87
and LDC2015E88 [23], as well as the official LRE2015 EVAL
data.

3.2. Unadapted tokeniser

The baseline tokeniser followed a feedforward DNN hybrid set-
ting with 6 hidden layers, where each contains 2048 neurons,
which are followed by a bottleneck layer with 64 neurons and an
output layer with 3815 neurons (as per the number of senones).
The input features to the DNN were Mel–frequency cepstral
coefficient (MFCC) features with differentials and mean nor-
malisation. Further follow-on processing used by global fea-
ture transform with linear discriminant analysis (LDA), a max-
imum likelihood linear transform (MLLT) and feature splicing
with 5 contextual frames to the left and the right of the centre
frame. The training targets were the senone alignment results
from a constrained maximum likelihood linear regression (CM-
LLR) adapted, maximum mutual information(MMI)-optimised
acoustic model set. This first-pass DNN is referred to as un-
adapted DNN, and abbreviated as “1-SWB” to indicate a sin-
gle set of training data. 1-SWB models were trained using the
cross-entropy criterion.

1-SWB was compared with the typically used Hungarian
(HU) phone tokeniser trained on SpeechDat database [24]. The
SpeechDat-HU tokeniser is known to have a rich phonetic va-
riety for a good performance of language recognition. Never-
theless, because of the unavailability for the raw training data, a
shallow neural network phone tokeniser trained on TempoRAl
Pattern (TRAP) techniques was used in this study [25].

3.3. Unsupervised adaptation of tokenisers

1-SWB was adapted to 20 different languages using the train-
ing data given for each of the 20 target languages in NIST LRE
2015 as shown in Table 1[19]. This study focused on language
recognition on speech with 3-second and 10-second durations.
In order to remove as much non-speech as possible DNN-based
voice activity detection was applied on the raw training data,



with the aim to derive speech segments of compatible durations
[23]. Segments of required durations in a particular language
are then used for sequence training with state-level MBR cri-
terion (Eq(2)) to derive an adapted tokeniser. A total of 20
adapted tokenisers were constructed. These are further col-
lectively denoted as 20-SWB’. Language recognition will be
performed on each of these 20-SWB’ tokenisers. The average
and the standard deviation of the min Detection Cost Function
(minDCF ) will be computed.

3.4. Language recogniser setup

In this study, different tokenisers and adaptation settings are ex-
plored. They share a common language recogniser setting based
on vector space modelling with tf-idf vectors [26]. In brief, the
tokenisers were applied on the multi-lingual training data to de-
rive phone transcripts. Utterance–based phone tri-gram occur-
rence statistics was then computed, from which term frequency
(tf) and inverse document frequency (idf) was derived. A sin-
gle tf-idf vector was constructed for each utterance, allowing to
train 20 binary classifiers for each of the 20 target languages.
The 20 target languages in NIST LRE 2015 are organised into
6 language clusters [19]. For the training for each classifier the
positive training vectors were selected from training utterances
belonging to the target language. Negative training vectors were
selected only from the training utterances within the same lan-
guage cluster. During testing, idf was inherited from the train-
ing data and the likelihood for each of the 20 languages was
computed to obtain the final language recognition result.

Language recognition scores were applied to a Gaussian
backend. For each system and each target language, a Gaus-
sian mixture model with 4 components was trained on the
multi-dimensional score vectors, which resulted from the de-
coding of the training data. During testing, the likelihood of
each language-dependent GMMs was computed. The Gaussian
back–end system is denoted asN (·).

System fusion was performed among a subset of the full
set of 20-SWB’ systems. In each fusion trial, single system
scores are converted to log likelihood ratios and 10% DEV data
portion extracted from LRE2015 TRAIN data set was used to
learn a linear weight for system combination, with respect to the
minimum detection cost [27]. System fusion trials were carried
out independently for the six language clusters and the 3-second
and the 10-second nominal duration data set.

4. Results
4.1. Quality of tokenisers

Table 2 shows the results of the phonotactic language recogni-
tion system using three different (sets of) tokenisers. Across the
three tokenisers, the Switchboard (SWB) tokeniser as used in
the official NIST LRE 2015 evaluation gave the best LR perfor-
mance in terms of the minDCF score.

The SpeechDat-HU tokeniser was a shallow NN tokeniser
and this was believed to be the cause of inferior LR perfor-
mance. On a separate internal test using TIMIT as the tokeniser
training data and LRE96 as the language recognition task, the
TRAP tokeniser gave 3% absolute higher (i.e. worse) minDCF
compared to a DNN tokeniser. If the TRAP versus DNN perfor-
mance difference on LRE96 can be transferred to performance
on LRE2015, results in Table 2 may suggest a potential gain of
phonotactic language recognition results with a better perform-
ing tokeniser.

The average LR performance of the 20 adapted tokenisers

Table 2: LRE performance (minDCF ) for different tokenisers
HELDOUT EVAL

Tokeniser 03s 10s 03s 10s
SpeechDat-HU 37.27 36.26 42.12 40.57
1-SWB 36.37 31.82 41.33 38.20
20-SWB’ 38.46 36.94 42.90 40.63

±0.22 ±0.61 ±0.08 ±0.28

were also included in Table 2 for reference. Note that after un-
supervised sequence training on the hypothesis transcripts of
the twenty target languages, the LR performance of individual
tokeniser settings showed worse performance. On 3-second and
10-second eval data, the minDCF increased by 1.6% and 2.4%
absolute respectively, in comparison to the unadapted SWB to-
keniser results. Nevertheless, the availability of the 20 tokeniser
system was expected to benefit from the output variety, and
therefore benefit the overall results with system fusion.

4.2. Gaussian backend and tokeniser combination

Table 3 shows results for system fusion with a Gaussian back-
end as well as score-level score calibration or system fusion be-
tween multiple phonotactic LR systems. Compared with the
results shown in Table 2, the Gaussian backend [N (·)] reduced
the minDCF for both unadapted and adapted tokenisers on 10-
second test data by at least 5% relative. However, the Gaussian
backend only worked for the adapted tokenisers on 3-second
test data. This may be due to the empirical choice of training the
Gaussian components on mismatched 30-second training data
for the case of unadapted tokeniser [23].

The bottom half of Table 3 shows results for logistic re-
gression score calibration, with the LR system score from the
unadapted SWB (1-SWB) tokeniser. Calibration yielded a 7%
relative reduction of minDCF on HELDOUT data while the per-
formance improvement on EVAL data was none or marginal. For
the score fusion with adapted SWB (SWB’) tokenisers, a mixed
trend could be observed when a subset of tokenisers were used
in fusion. When all LR systems with 20 different adapted to-
kenisers (20-SWB’) were combined a consistent gain of at least
10% relative could be observed on HELDOUT data. The corre-
sponding gain on EVAL data was 5− 9% relative.

Comparing between the LR system with single tokeniser,
cal(1-SWB), and the fusion of LR systems with adapted to-
kenisers, fusion(20-SWB’), the 20-SWB’ system is 14% and
11% relative better on HELDOUT data. On EVAL data it was 7%
and 5% relative better.

Gaussian backend was an important process to normalise
the scores from multiple LR systems for fusion. According to
our experiments, excluding the Gaussian backend would elimi-
nate all possible gain from system fusion.

4.3. Fusion with acoustic systems

In a final set of experiments the single SWB tokeniser phono-
tactic LR system (1-SWB) and multiple LR systems with 20
adapted-SWB tokenisers (20-SWB’) were combined with an
acoustic LR system. The acoustic LR system was an iVector
system and results are shown in Table 4. The minDCF for the
iVector system is much lower than those of the 1-SWB and 20-
SWB’ on HELDOUT data. Nevertheless, the performance gap
narrows on EVAL data. All fusion settings resulted in an im-
provement of performance. Fusion with 20-SWB’ gave bet-



Table 3: LRE performance (minDCF ) for tokeniser combina-
tion. On EVAL data, 20-SWB’ systems were 5 − 7% relative
better than 1-SWB (results underlined)

HELDOUT EVAL
Tokeniser 03s 10s 03s 10s
[Gaussian backend]
N (1-SWB) 38.87 29.69 42.01 35.33
N (20-SWB’) 36.04 32.02 40.66 37.87

±0.53 ±1.27 ±0.17 ±0.77
[Score calibaration / system fusion]
cal(1-SWB) 36.11 27.43 41.63 36.07
fusion(ara-5-SWB’) 31.65 25.83 38.43 36.24
fusion(eng-3-SWB’) 31.57 26.88 39.23 36.51
fusion(fre-2-SWB’) 32.79 27.10 40.27 36.17
fusion(qsl-2-SWB’) 31.84 28.20 39.03 37.94
fusion(spa-4-SWB’) 31.80 26.06 38.95 35.25
fusion(zho-4-SWB’) 31.55 27.93 39.07 37.37
fusion(20-SWB’) 31.19 24.50 38.55 34.40

Table 4: LRE performance (minDCF ) for acoustic systems
HELDOUT EVAL

System] 03s 10s 03s 10s
iVector 22.83 17.38 36.61 34.22
iVector+1-SWB 21.33 16.68 35.58 32.42
iVector+20-SWB’ 21.53 15.80 35.26 31.73

bn-iVec 18.47 14.85 32.55 29.78
bn-iVec+1-SWB 18.04 13.67 32.41 28.18
bn-iVec+20-SWB’ 17.75 14.43 32.02 28.21

iVector+bn-iVec 18.68 13.70 32.50 28.24
iVector+bn-iVec+1-SWB 18.43 12.31 32.26 27.88
iVector+bn-iVec+20-SWB’ 17.36 13.38 31.76 28.12
] 1-SWB is score calibrated, 20-SWB’ is a fusion system with 20 systems

ter or equal performance as fusion with 1-SWB. Across differ-
ent data sets and different durations, fusion with 1-SWB gave
a relative 3-7% reduction on minDCF , and fusion with 20-
SWB’ gave a relative 4-9% reduction on minDCF . Despite the
marginal difference, the performance gain with the ensemble of
tokenisers was carried over in the acoustic-phonotactic fusion
system.

We also tried system fusion of 20-SWB’ with (i) the
bottleneck-iVector system [23], and (ii) a combination of the
iVector and the bottleneck-iVector systems. All acoustic-
phonotactic fusions demonstrated reduction of minDCF . How-
ever, as the performance gap between the acoustic and phono-
tactic counterparts was larger again, the robustness of 20-SWB’
over 1-SWB was weakened. This is particularly true for 10-
second test data.

5. Summary
This study investigated the use of unsupervised tokeniser adap-
tation to create variations of a baseline tokeniser for use in
phonotactic language recogntion. The baseline Switchboard to-
keniser was adapted towards a set of 20 target languages from
the NIST LRE 2015. Fusion of the outputs of the 20 adapted to-
kenisers results in at least a 10% relative reduction in minDCF
on the internal development data set and a 5−7% relative reduc-
tion on LRE2015 EVAL data. This gain was retained when the
system was fused with an acoustic iVector langauge recognition

system. These results indicated the usefulness of phonotactic
LR approach despite the lack of a high quality tokeniser. Fu-
ture studies will focus on the robustness of phone occurrence
statistics, particularly for short duration test sentences. The
soft estimate with phone posteriogram or bottleneck features
could be incorporated in the phonotactic approach. Adaptation
of tokenisers to maximised langauge discriminability of the de-
coded phones may also give promising options for further ex-
ploration.

6. Acknowledgements
This work was supported by the EPSRC Programme Grant
EP/I031022/1 (Natural Speech Technology).

7. Data access statement
Data used in this paper was obtained from these resources:
Switchboard 1, Switchboard Cellular Part 2 and multilin-
gual training data sets for NIST LRE 2015 (LR2015E87,
LR2015E88). Specific file lists used in the experi-
ments, as well as result files can be accessed online with
DOI:10.15131/shef.data.3462599

8. References
[1] Y. K. Muthusamy, E. Barnard, and R. A. Cole, “Reviewing au-

tomatic language identification,” IEEE Signal Processing Maga-
zine, vol. 11, no. 4, pp. 33–41, Oct. 1994.

[2] M. A. Zissman, “Comparison of four approaches to automatic lan-
guage identification of telephone speech,” IEEE Transactions on
Speech and Audio Processing, vol. 4, no. 1, pp. 31–44, January
1996.

[3] E. Ambikairajah, H. Li, L. Wang, B. Yin, and V. Sethu, “Language
identification: A tutorial,” Circuits and Systems Magazine, IEEE,
vol. 11, no. 2, pp. 82 –108, secondquarter 2011.

[4] H. Li, B. Ma, and K. A. Lee, “Spoken language recognition:
From fundamentals to practice,” Proceedings of the IEEE, vol.
101, no. 5, pp. 1136–1159, May 2013.

[5] S. Davis and P. Mermelstein, “Comparison of parametric repre-
sentations for monosyllabic word recognition in continuously spo-
ken sentences,” Acoustics, Speech and Signal Processing, IEEE
Transactions on, vol. 28, no. 4, pp. 357–366, Aug 1980.

[6] P. A. Torres-Carrasquillo, E. Singer, M. A. Kohler, R. J. Greene,
D. Reynolds, and J. J. R. Deller, “Approaches to language identi-
fication using gaussian mixture models and shifted delta cepstral
features,” in Proc. ICSLP, 2002.

[7] M. A. Zissman, “Automatic language identification using Gaus-
sian mixture and hidden Markov models,” in Proc. ICASSP,
vol. II, 1993, pp. 399–402.

[8] E. Singer, P. A. Torres-Carrasquillo, T. P. Gleason, W. M. Camp-
bell, and D. A. Reynolds, “Acoustic, phonetic and discrimina-
tive approaches to automatic language recognition,” in Proc. Eu-
rospeech, 2003, pp. 1345–1348.

[9] T. J. Hazen and V. W. Zue, “Segment-based automatic language
identification,” J. Acoust. Soc. Am., vol. 101, no. 4, pp. 2324–
2331, Apr. 1997.

[10] G. Gelly, J.-L. Gauvain, L. Lamel, A. Laurent, V. B. Le, and
A. Messaoudi, “Language recognition for dialects and closely re-
lated languages,” in Odyssey 2016, 2016, pp. 124–131.

[11] “NIST LRE 2015 workshop,” Informal communication, 2015.
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