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Abstract
A quality estimation (QE) approach informed with machine
translation (MT) and speech recognition (ASR) features has re-
cently shown to improve the performance of a spoken language
translation (SLT) system in an in-domain scenario. When do-
main mismatch is progressively introduced in the MT and ASR
systems, the SLT system’s performance naturally degrades. The
use of QE to improve SLT performance has not been studied in
this context. In this paper we investigate the effectiveness of QE
under this setting. Our experiments showed that across moder-
ate levels of domain mismatches, QE led to consistent trans-
lation improvements of around 0.4 in BLEU score. The QE
system relies on 116 features derived from the ASR and MT
system input and output. Feature analysis was conducted to un-
derstand the information sources contributing the most to per-
formance improvements. LDA dimension reduction was used to
summarise effective features into sets as small as 3 without af-
fecting the SLT performance. By inspecting the principal com-
ponents, eight features including the acoustic model scores and
count-based word statistics on the bilingual text were found to
be critically important, leading to a further boost of around 0.1
BLEU score over the full set of features. These findings pro-
vide interesting possibilities for further work by incorporating
the effective QE features in SLT system training or decoding.
Index Terms: Spoken language translation, quality estimation,
system robustness

1. Introduction
Quality estimation (QE) is a popular research topic in machine
translation (MT). The idea behind QE is to make use of the in-
put, output and optionally internal scores from the MT systems
to build a link between these information and the translation
quality. One possible application is to use this to guide the in-
ference process in MT towards optimal performance in transla-
tion. In spoken language translation (SLT), most systems adopt
a pipelined approach whereby the automatic speech recogni-
tion (ASR) and MT components are trained independently. It
has already been suggested, however, that this type of approach
where ASR systems are trained independently of their final ap-
plication is suboptimal in the context of speech translation [1].
Analogously, the component MT system is trained on human
texts, which are significantly different from the actual runtime
input (ASR hypotheses). Given these mismatches, additional
information from QE models can be very useful to improve an
SLT system. In our recent study, QE was used to predict the
translation quality of the k-best hypotheses from the ASR sys-
tem output. Based on these predictions, ASR k-best list rescor-
ing was performed before the actual machine translation. This
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way of considering additional information in SLT proved to be
efficient in a benchmark SLT task for IWSLT [2].

Given the positive results in the benchmark SLT task, two
natural questions arise. First, the stability of the system perfor-
mance based on QE information. It is unknown how QE perfor-
mance changes under various sources of variability in the ASR
models, MT models and also the different SLT inputs. Second,
given the use of over 100 features in QE, it would be bene-
ficial to gain a deeper insight into the relative contribution of
different features. To answer the first question, we conduct a
stability study by replicating the QE experiments and progres-
sively introducing moderate domain mismatch in the ASR and
MT systems. For the second question, linear discriminant anal-
ysis (LDA) was conducted on the features.

This work represents a substantial extension of our recent
work [2]. Here we tested and demonstrated the stability of the
QE approach in SLT by using three domain mismatch scenarios.
Another contribution of this work is from feature factorisation
and analysis. A straightforward linear transformation technique
served to reduce the feature dimensionality, as well as to reveal
eight important features which gave rise to extra gains over the
full feature set. In the following, §2 introduces the technical
details of the QE and LDA approached used in this study study.
These are followed by a description of the data and setup in §3,
4. The main results are in §5, and conclusions in §6.

2. Quality estimation for SLT
2.1. Features for QE

The QE system takes into consideration a wide range of fea-
tures. A total of 116 features were used in this paper. The fea-
tures were almost identical to the feature inventory used in [2].
The only change was to exclude the pseudo reference features.
This was due to the expensive computation for the feature, and
the very small performance gain it gave.

The 116 features are summarised in Table 1. They can be
classified into three big classes. 21 features were extracted from
the ASR system output. These features describe the decoder
scores from the acoustic and the language models, the ASR k-
best rank information and other count statistics. 79 are transla-
tion “blackbox” features. They were extracted based on source
segments (difficulty of translation), target segments (translation
fluency), and the comparison between the source and target
segments (translation adequacy). 16 features are MT system-
dependent, the so called “glassbox” features. They describe
the confidence of the MT system, such as the global model
score. The blackbox and glassbox features were extracted us-
ing the open source toolkit QUEST (http://www.quest.
dcs.shef.ac.uk). More detailed descriptions on the fea-
tures can be found in [2, 3, 4].



Table 1: Summary of 116 features for the quality estimation system
Type Description #Feat Type Description #Feat
ASR Acoustic model & Language model score 6 Blackbox 1-3 gram LM counts and statistics in different 16

Inverse document frequency 1 (con’d)] frequency quartiles in source language
Binary features for the identity of k in k-best 10 Counts and % of punctuations 7
Number of words and its normalised variants 4 Absolute difference in punctuations between 14

Blackbox] Counts of tokens / brackets / quotation marks 8 source and target sentences
Average number of translations per source 16 % of nouns / verbs / content words 12
word as given by IBM 1 model Glassbox] Global score of the MT system 1
Source/Target sentence LM probability/perplexity 6 Model features 15

]: MT-based features

2.2. Dimension reduction of features

The nature of the 116 features suggests that they may be highly
redundant, which may introduce noise affecting QE model
learning. Previous studies suggested the usefulness of feature
selection techniques to select a subset of features for QE in MT.
For instance, [5, 6] employed Gaussian Process to discrimina-
tively rank the features and showed that a model built based on
the top selected 10 − 25 features outperforms a model trained
on the full feature set.

In SLT, linear modelling of QE features was shown to give
the best results [2]. For this reason, linear discriminant analysis
(LDA) was carried out. Let [x0,x1, · · · ,xN−1]∀xn ∈ RD

represents a feature set with N samples and D dimesnions,
[y0, y1, · · · , yN−1],∀yn ∈ [0, 1, · · · , C − 1] represents the
class labels. LDA aims to find a projection A to apply on xn

that maximises the Fisher criterion, which is defined as the ratio
of between-class covariance to within-class covariance,

A = argmax
A

|ASbA
T |

|ASwAT | , (1)

where Sb and Sw are the covariance matrices of xn in the orig-
inal space. In this study, the number of samples N and the
dimensions of features D are 8133 and 116, respectively. Fol-
lowing the conventional LDA methodology one would easily
run into the problem of degeneracy, i.e. having covariance ma-
trices which are non-invertible. To avoid this problem, an ap-
proach with principal-component-analysis (PCA) followed by
LDA is used for dimensionality reduction of features [7]. In the
first stage, PCA is used to project the features from the original
space to a class space, where the dimensionality is reduced and
Sw no longer degenerates. In the second stage, LDA transfor-
mation is used to produce the most discriminating feature set.

QE in SLT has been traditionally addressed as a regression
problem, where a continuous target value (in this case, a ME-
TEOR quality score [8]) is predicted from xn. In order to use
LDA, a scalar quantisation step was conducted to discretise the
target variable into C classes. In this experiment, we experi-
mented with varying C from 3 up to 10.

Table 2: Data involved in SLT training/testing
Model Training data set (duration / # words)
ASR1-AM TED(132h), LLC(106h), ECRN(60h)
ASR2-AM TED(112h), AMI+AMIDA+ICSI(165h),

ECRN(60h).
ASR1/2-LM TED(3.17M)[, News commentary(4.0M),

Commoncrawl(70.7M), Gigaword(575.7M),
Europarl (50.3M).

ASR-LM-dev Dev(17K) & Test(27K) sets from IWSLT 2010
MT-TM TED (3.17M)#, News commentary(0.7M),

Commoncrawl(10.8M), Gigaword(14.9M),
Europarl (1.9M).

MT-LM TED (3.25M)#, News commentary(4.7M),
Commoncrawl(76.7M), Gigaword(145.6M),
Europarl(52.5M), News-test-2013(187.2M),
UNdoc(90.4M)

MT-tune Dev(17K) & Test(27K) sets from IWSLT 2010
[ # In-domain data (TED) removed in training ASR2-LM / mimatched MT models

2.3. Stability of quality estimation in SLT

The stability of a QE system is defined as its capability to main-
tain a fairly constant performance across different scenarios.
The QE system depends on a number of features. The concept
of stability is thus essentially connected to whether or not the
features used are reliable across scenarios. This question was
addressed by a variability study, where the experiments were
replicated in different settings. In particular, it is known that
SLT’s performance can degrade with training and test domain
mismatches. Therefore we investigate the interesting problem
of whether QE can retain a stable performance in those cases.

3. Data
Table 2 shows the data used for ASR and MT system training,
which mostly followed the settings in our IWSLT 2014 sub-
mission [9]. Two ASR models, ASR1 and ASR2 were trained.
For the acoustic models, both ASR1 and ASR2 were trained on
TED data (i.e. in-domain data). The AM data for ASR1 was
augmented by the lecture archives from the liberated learning
consortium (LLC) and the Stanford University’s entrepreneur-
ship corner (ECRN) [10, 11]. In ASR2, besides ECRN 165
hours of meeting data from the AMI, AMIDA and ICSI cor-
pora were added so the ASR model would also reflect generic
domains other than only lectures [12]. ASR language models
were trained on the same dataset except that TED data was re-
moved for ASR2.

The text data for language and translation models training
were mostly taken from WMT14 [13], supplemented with the
official in-domain TED data in IWSLT evaluations [14]. Data
other than TED talks came from news commentaries and parlia-
mentary minutes and they are considered to be out-of-domain.

Language model adaptations and MT system tuning were
performed on the IWSLT 2010 development and test data (44K
words). These data were the held-out set from the TED training
data mentioned above.

The QE system was trained on features extracted from SLT
system input and output. In the training phase, SLT was run
on IWSLT 2011 test data. It comprises 818 segments with 1.1
hours of length in English speech and 13K words in French
text. The QE system was tested on IWSLT 2012 test data, with
1124 sentences (1.8 hours in English speech, 20K words in
French text).

4. Experimental setup
4.1. ASR and MT

The SLT task reported in this paper is an English-speech-to-
French-text translation task on TED talks data [15]. The SLT
system comprises an English ASR and an English-to-French
MT system, which follows the setup presented in [9].

The ASR system was a multi-pass system comprising DNN
acoustic models with tandem configurations, VTLN wrapped



features, MPE trained HMM models with CMLLR and MLLR
transformation and 4-gram language model rescoring. Two
variants of the ASR system were considered: ASR1 and ASR2.
ASR1 resembles an in-domain system setting and ASR2 was
built to introduce domain mismatches. Compared with our pre-
viously reported system, cross CMLLR and MLLR adaptations
using ASR1 hypotheses to adapt ASR2 (and vice versa) were
substituted by self adaptations. This is to make a clear distinc-
tion between the matched- and mismatched-domain ASR runs.
On the IWSLT 2012 test data, the ASR1 and ASR2 variants
reached WERs of 14.3% and 16.4% respectively, i.e. a 15%
relative increase of errors when out of domain data became
dominant in the training.

Two variants of phrase-based MT system were trained on a
standard setting [16]. In-domain MT models were trained and
tuned on the data listed in Table 2, i.e. human written text in
the source language, taking no account of issues such as punc-
tuation deletions, case and word errors in the ASR outputs. A
monolingual translation model was used to recover casing and
punctuation from the ASR output, producing source sentences
which are more adequate for translation. Domain mismatched
MT models were built by removing the TED data from all train-
ing components (those components marked # in Table 2).

In our experiments, all translation results were scored on
true-cased output, which gives around 0.55 BLEU score in-
crease on the results we had previously reported.

4.2. QE system setup

The QE-informed ASR k-best list rescoring described in [2]
was conducted. In brief, the ASR and MT systems were run
on the QE training and test data (§3). The top 10 ASR and their
1-best MT results were generated. 116 sentence-based features
were then derived from the ASR and MT system input / out-
put and system internal scores. METEOR score was computed
on every decoded sentence in the QE training set (IWSLT 2011
test) based on human reference translations as the learning tar-
get. The QE models were generated to learn the relationship
between the features and the target using support vector regres-
sion (SVR) machines [17]. Afterwards, METEOR scores on
the translations for the 10-best ASR outputs in the QE test set
(IWSLT 2012 test) were predicted, based on which this ASR
10-best list was rescored, before the corresponding translation
hypothesis was decided. An ASR confidence-informed heuris-
tic was applied such that rescoring was only conducted on sen-
tences with lower ASR confidence [2]. This heuristic was ap-
plied in the experiments reported throughout this paper.

4.3. QE tests in various domain mismatch scenarios

To investigate the robustness of QE in different domain mis-
match scenarios, three SLT system settings were tested as illus-
trated in Table 3. Setting A is the best possible scenario, where
both ASR and MT were trained on in-domain data. Domain
mismatch was introduced in Setting B by excluding TED data
from the MT training data. In Setting C we tested the extreme
case where in-domain TED data was excluded from MT and a
general-domain ASR model was used.

QE experiments were replicated in these three settings. The
mismatch in ASR led to a relative increase of 15% in WER. In
MT, the mismatch brought about 1.4 BLEU score reduction.

Table 3: Different system training data in three scenarios
Setting A: ASR1 Contains TED
Setting B: ASR1 Excludes TED
Setting C: ASR2 Excludes TED

4.4. Factorisation of features

Linear transformation of features using LDA was carried out
(§2.2). With the features in the projected space, the steps of
SVR learning, METEOR score prediction and ASR 10-best list
rescoring described in §4.2 were replicated to generate corre-
sponding SLT results. In the experiments reported in this paper,
the size of the projected dimensions was tied to the number of
target classes. We also tried other combinations where the num-
ber of target classes was higher than the projected dimensions.
However, this did not lead to better results.

5. Results
5.1. Behaviour of QE under domain mismatch

The SLT systems in the three scenarios were applied on the QE
training and test data. Table 4 summarises the differences in
the IWSLT 2012 test set generated for each scenario (i.e., dif-
ferent English source segments and different translations). The
translations of the 10-best ASR output were concatenated into
a long list and an edit distance metric (TER [18]) was com-
puted by pairwise comparisons of the three sets. On the English
side, Settings A and B share the same ASR input so the TER
is zero. The highest TER is observed between Settings A and
C in French (41.7%), which clearly reflects the changes caused
by different training data in both ASR and MT systems. The
same level of TER is observed for the QE training data (IWSLT
2011 test). These numbers suggest that Settings A, B and C are
generating significantly different input for QE (especially on the
target language side). Therefore, any observed trends in the QE
results across the three settings can be interpreted as consistent
results across very different data.

Table 4: Difference between IWSLT 2012 test output with dif-
ferent systems (Settings A, B, C) in terms of TER

Setting B Setting C French
20.8% 41.7% Setting A

Setting B 0.0% 33.3% Setting B
Setting C 21.3% 21.3%

English Setting A Setting B

Table 5 shows the BLEU scores with ASR 10-best list
rescoring on the IWSLT 2012 test data using the QE model
learnt on IWSLT 2011 data. The three columns represent dif-
ferent domain mismatch levels (Settings A, B and C). The top
row shows the baseline results, where the first-best ASR was
translated as is. Rescoring with the full set of 116 features is
reported in the bottom row. Six different groupings of features
were made according the feature types in Table 1 and their re-
sults are also shown. It was found that across Settings A, B and
C, the BLEU improvements with all features are stable (0.41,
0.44 and 0.53). The absolute BLEU improvement is smaller
compared with the 0.54 reported in [2]. This is because the
translation model and target language model used in this study
were trained on 2.3M and 3.9M fewer words respectively. Post-
experimental studies showed that the new models led to small
differences (< 0.1 BLEU) for the first-, second- and third-best
ASR output, but a reduction of up to 0.3 BLEU points for the
ninth- and tenth-best ASR output. This limited the improvement
of QE rescoring overall.

We have also run extra experiments to introduce variabil-
ity in SLT performance by replacing the 5-gram target language
models with 2-gram ones. This significantly reduced the base-
line BLEU score by 3-4 points (A: 29.05, B: 26.68, C: 25.49).



By running QE on these data sets, the corresponding BLEU
score increase is 0.21, 0.32 and 0.24 respectively. The expres-
sive power of both blackbox and glassbox features was weak-
ened by the use of a weaker target language model, thereby also
affecting the overall results of QE.

Table 5: Translation results (BLEU) by ASR 10-best list rescor-
ing with different features in different scenarios

Setting
Features (# features) A B C
Baseline (0) 32.03 30.64 29.41
ASR (21) 31.97 30.48 29.56
Glassbox (16) 32.41 31.06 29.93
Blackbox (79) 32.32 30.80 29.95
ASR + Glassbox (37) 32.45 30.96 30.02
Blackbox + Glassbox (95) 32.51 30.99 30.04
ASR + Blackbox (100) 32.37 31.03 30.04
ASR + Blackbox + Glassbox (116) 32.44 31.08 29.94
Test data: IWSLT 2012 test

5.2. Dimensionality reduction of features

Table 5 shows that, in different scenarios, different subsets of
QE features for rescoring lead to better results than the full set of
116 features. For Set A, the best result was attained with black-
box and glassbox features. The full feature sets worked best for
Set B. For Set C, either the ASR or the glassbox features had
to be excluded. These results are included in the second row
in Table 6. Only limited groupings were explored, but it was
infeasible to try out all possible groupings given the large num-
ber of combinations. LDA essentially acted as a soft selection
tool of features by optimally combining them. Table 6 shows
the performance with LDA. In Settings A and B, LDA projec-
tions down to 3 dimensions led to an even higher increase in
BLEU than using the full set (0.5 and 0.48 over the baseline).
For Setting C, the highest increase in BLEU was obtained with
10 dimensional features (0.67 over the baseline).

Table 6: QE results with LDA dimensionality reduction
Setting

Features A B C
Full set 32.44 31.08 29.94
Best grouping
(from Table 5)

32.51 31.08 30.04

LDA with projected space dimensions:
3 32.53 31.12 29.85
4 32.48 31.02 30.05
5 32.43 31.01 30.00
6 32.47 31.05 29.97
7 32.48 30.06 30.01
8 32.36 30.99 30.00
9 32.42 30.97 30.03
10 32.49 31.03 30.08

The extra 0.1 BLEU score gain over the use of the full
feature set is an interesting result. We further inspected the
LDA transformation matrices. It was discovered that in all set-
tings, the weights were fairly equally distributed among fea-
tures. Nevertheless, eight features in particular had a weight
magnitude at least ten times higher than the average of the oth-
ers. These eight features are listed in Table 7.

To further analyse the contributions of these eight features,
a control experiment was performed. We removed the eight
features beforehand, and followed exactly the same LDA-QE
pipeline. The resulting BLEU scores were 32.47, 31.03 and
29.96 for Settings A, B and C, respectively, i.e. very similar

Table 7: List of critically important features
Type Feature description (Dimension)
ASR Normalised sentence-based score from the acoustic

model (1), Difference of the above feature to its
1-best counterpart (1)

Blackbox Average number of translations per source word in
the source sentence (4), The above feature
weighted by the source words frequency (2)

to the full feature set results. Also, without those features, the
projection weights no longer showed a skewed distribution.

The LDA experiment showed that the 116 features opti-
mally combined in a simple manner to give 0.4 BLEU improve-
ment. Emphasising the eight features would give a further boost
of 0.1 BLEU score. The feature of acoustic model scores is a
collapsed scalar metric which averages out all the component
phoneme statistics in the sentence. Its design for QE may be
reconsidered so they can be fully exploited. The 6 remaining
blackbox features are known to perform well for QE in gen-
eral. They reflect the ambiguity of the source words in terms of
the number of possible translations they have. It is known that
the more ambiguous a word is, the higher the chances it can be
incorrectly translated.

Table 8: Best LDA results in relation to 8 important features
Include 8 critically Settings
important features A B C

Yes 32.53 31.12 30.08
No 32.47 31.03 29.96

Finally, we present some preliminary observations on the
transfer capabilities of the features (and the LDA projected fea-
tures) across different scenarios. We found that under certain
criteria, features from different systems (i.e. settings) may be
shared. More empirical analysis is needed to check this hypoth-
esis. However, this finding bares significant implications. Al-
though a QE system is not expensive to train, the generation of
the QE training data involves the use of ASR and MT systems.
Most of the data was used in training the systems, leaving only
a small amount of held-out data for QE training. The ability to
transfer the QE model from one scenario to another would thus
greatly improve the efficiency of model training.

6. Conclusions
In this paper we demonstrated the stability of QE system and
proposed an effective linear factorisation for the QE features. A
constant BLEU score improvement of 0.4 to 0.5 was achieved
across different scenarios where domain mismatches are pro-
gressively introduced in the training data of ASR and MT sys-
tems. LDA was used to project the over 100 QE features into
very small dimensions without reducing the QE performance.
Moreover, 8 features were found to be critically important and
gave a further 0.1 boost in BLEU score across various scenar-
ios. These findings provide promising directions for further im-
provements of SLT by incorporating effective QE features into
SLT system training or decoding.

7. Data Access Statement
Data used in this paper was obtained from these sources: ICSI
Meetings corpus (LDC# LDC2004S02), AMI corpus (DOI#
10.1007/11677482 3), TedTalks, E-corner and MT training
data (harvested from www.ted.com, ecorner.stanford.edu, and
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periments, as well as result files can be downloaded from
http://mini.dcs.shef.ac.uk/publications/papers/is15-ng.
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