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Intelligibility Assessment and Speech Recognizer Word
Accuracy Rate Prediction for Dysarthric Speakers
in a Factor Analysis Subspace
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Automated intelligibility assessments can support speech and language therapists in determining the type
of dysarthria presented by their clients. Such assessments can also help predict how well a person with
dysarthria might cope with a voice interface to assistive technology. Our approach to intelligibility assessment
is based on iVectors, a set of measures that capture many aspects of a person’s speech, including intelligibility.
The major advantage of iVectors is that they compress all acoustic information contained in an utterance
into a reduced number of measures, and they are very suitable to be used with simple predictors. We show
that intelligibility assessments work best if there is a pre-existing set of words annotated for intelligibility
from the speaker to be evaluated, which can be used for training our system. We discuss the implications of
our findings for practice.
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1. INTRODUCTION

The term dysarthria is used to refer to any of the speech disorders caused by distur-
bances in neuromuscular control of the speech mechanism and resulting from impair-
ment of any of the basic motor processes involved in speech production [Darley et al.
1975]. This can affect respiration, phonation, resonance, articulation, and prosody,
and can provoke abnormal characteristics in speech quality and reduced intelligibil-
ity. Six major types of dysarthria can be found depending on the affected area of the
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neuromotor system: flaccid associated with lower motor neurons; spastic with upper
motor neurons linked to the cerebral cortex; ataxic with the cerebellum; hyperkinetic
and hypokinetic both with the extrapyramidal system; and mixed, which affects more
than one of the previous areas [Enderby 2013].

Clinical diagnoses of dysarthric speakers have been traditionally conducted by speech
therapists, which means that there is a subjective contribution in the evaluations, re-
sulting in disagreements among experts. To remove as much of this subjectivity as
possible, standard methods to assess dysarthria diagnosis have been developed, like
the Dysarthria Profile [Robertson 1982], the Frenchay Dysarthria Assessment (FDA)
[Enderby 1983], and the Dysarthria Examination Battery (DEB) [Drummond 1993]. All
of these contain a section dedicated to rating intelligibility, because the level of intel-
ligibility is an indication of the type of dysarthria, degree of the disorder, and relative
contribution of the basic physiological mechanisms [Strand 2004]. One of the benefits
that speech technology brings to speech therapists is the objectivity and replication
of the results; consequently, some implementations of these tests have introduced this
type of technology. For example, in Carmichael [2007], an automatic speech recognition
(ASR) system is used to rate intelligibility in a computerized version of the FDA.

Basically, two main approaches are found in the literature for predicting intelligibil-
ity of dysarthric speakers. In the first approach, the speech intelligibility is calculated
directly from the word accuracy rate (Accuracy) obtained from an ASR system. This is
based on the observation that intelligible speech will obtain high Accuracy on an ASR
system trained on typical and presumably highly intelligible speech, and low intelli-
gible speech will obtain low Accuracy [Doyle et al. 1997; Carmichael and Green 2004;
Sharma et al. 2009; Christensen et al. 2012]. One of the main weaknesses of these
systems is that they are trained only on nondysarthric speakers, and the result can
be unpredictable for very severe subjects [Middag et al. 2009]. In the second approach,
different features are extracted from speech and used to build an intelligibility assess-
ment system [Middag et al. 2011; Falk et al. 2011; Bocklet et al. 2012; Falk et al. 2012;
Paja and Falk 2012]. These experiments are supported by perceptual studies that show
how intelligibility can be expressed as a linear function of multiple speech dimensions
[De Bodt et al. 2002]. In this approach, the use of a speech recognizer or an automatic
speech alignment (ASA) system is restricted to feature extraction [Van Neuffelen et al.
2009; Middag et al. 2009].

In this article, the information contained in a whole utterance (in our case, each
utterance contains a single word) is compressed and represented as points in the total
variability subspace, or iVectors, a state-of-the-art approach successfully applied in
the field of speaker recognition [Dehak et al. 2011]. The total variability subspace
is a low-dimension subspace trained with factor analysis (FA) modeling, where the
main variabilities describing the data are kept. Thereby, iVectors are a reduced set of
measures that capture many aspects of the speech, and our hypothesis is that they
also contain information about intelligibility. Thus, intelligibility assessments can be
based on them. Our methodology is similar to Bocklet et al. [2012], but instead of
using iVectors, they used GMM-based supervectors. However, the great dimensionality
reduction given by iVectors allows building much simpler predictors.

iVectors are computed from the acoustic parametrization of the signal. In our work,
the acoustic information is represented through the perceptual linear prediction (PLP)
features [Hermansky 1990], a speech representation that encodes frequency informa-
tion inspired by human speech perception. For every utterance, 39 PLP coefficients
are computed every 10ms, and our method produces a single 400-dimensional iVector
representing the whole utterance instead, independently of its duration.

This work was initiated in Martı́nez et al. [2013], where we built an intelligibility as-
sessment system for dysarthric speakers based on iVectors. We obtained correlations of
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above 0.90 between the intelligibility ratings given as ground truth and those predicted
automatically by our system. The work was done using the Universal Access Speech
(UAspeech) database [Kim et al. 2008]. In the present article, this research is ex-
tended with new experiments, keeping the same system architecture and configuration.
Mainly, and unlike that work, we also analyze the case where we do not have available
recordings of the application user for training. In this new scenario, we will see that one
big problem of current databases, such as UAspeech, is that each speaker is associated
to a single intelligibility rating, and when one speaker is removed from the training
dataset, the system has difficulties in learning information about his or her associated
intelligibility. To overcome this problem, a classification system is presented, where the
intelligibility scale is divided into intervals, with each interval representing a class. The
objective is to assign the speaker intelligibility to one of those classes. Paja and Falk
[2012] already showed promising results in classification of spastic dysarthric speech
of the UAspeech database into two levels of intelligibility: mid-low and mid-high.

Additionally, the system is trained to predict the Accuracy given by a speech recog-
nizer when it is used by dysarthric speakers. We realized that the same architecture
designed to assess intelligibility could be directly used to predict the performance of a
speech recognizer, and that iVectors would also capture the information needed to make
such predictions. ASR has a high potential for being used by clinicians as an assistive
technology for dysarthric speakers, and if we were able to obtain a confidence measure
of the recognizer, uptake rates would increase and health-related costs would diminish
[Mengistu et al. 2011]. On many occasions, people with dysarthria have limited range
of movements, and it can be tough for them to press the keys of a keyboard or move
the mouse to use a computer. ASR is an ideal human-computer interaction solution to
overcome these difficulties. This problem was tackled in Mengistu et al. [2011] for spas-
tic dysarthric speakers, and they found good correlations between ASR performance
and the predictions made by their automatic system using as input linear prediction
coefficient (LPC) kurtosis and skewness, LPC residual kurtosis, and F0-range.

One of the main problems of working with dysarthric speech is the scarcity of data
within the available databases [Green et al. 2003]. Data recording requires several
repetitions of words involving difficult movements of the speech articulators, which
can be exhausting to speakers with some dysarthric conditions. In this article, we
work with the UAspeech database, where different types of recordings belonging to
15 dysarthric speakers with different degrees of intelligibility are available. Given the
limited number of speakers, the experiments conducted in previous studies on this
database [Falk et al. 2011, 2012; Christensen et al. 2012; Paja and Falk 2012; Martı́nez
et al. 2013] used data from the test speaker during training (naturally, data not seen
in training). This would correspond to a scenario where the users of the assistive
technology application were known in advance, and therefore data of the final users
could be precollected to build the system. However, although this is common in real
life, it is not always the case; there are occasions in which we do not know who will use
the system. This opens a window to a more general situation in a clinical environment,
where we would desire one single application useful to everybody. In this work, we give
a step forward and compare both situations.

The article is organized as follows. In Section 2, the databases used for the ex-
periments are presented, and in Section 3, the system architecture is detailed. The
evaluation methods are described in Section 4, and the experiments on intelligibility
assessment are shown in Section 5. Section 6 presents the experiments on the ASR
Accuracy rate assessment, both with regression and classification results. In Section 7,
the goodness and efficiency of iVectors are analyzed for an intelligibility assessment
application. The conclusions of the work are drawn and discussed in Section 8.
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Table I. UAspeech Speaker Information

No. Speaker Label Age Speech Intelligibility (%) Dysarthria Diagnosis
1 M04 >18 Very low (2) Spastic
2 F03 51 Very low (6) Spastic
3 M12 19 Very low (7.4) Mixed
4 M01 >18 Very low (15) Spastic
5 M07 58 Low (28) Spastic
6 F02 30 Low (29) Spastic
7 M16 — Low (43) Spastic
8 M05 21 Mid (58) Spastic
9 F04 18 Mid (62) Athetoid
10 M11 48 Mid (62) Athetoid
11 M09 18 High (86) Spastic
12 M14 40 High (90.4) Spastic
13 M10 21 High (93) Mixed
14 M08 28 High (93) Spastic
15 F05 22 High (95) Spastic

Note: In the first and second columns, we have the speaker identification number and label. In the third
column, we have the speaker’s age. In the fourth column, we have the ground truth speech intelligibility
ratings given in the UAspeech database. In the fifth column, we have the type of dysarthria of each
speaker. We can find spastic (voice perceived as strained, harsh, raspy, slow, showing consonant distortion
and hypernasality), Athetoid (unstressed and monotone voice, inappropriate voice stoppage or release,
variable speech rate), and mixed (voice shows a combination of effects of previous types).

2. AUDIO MATERIAL

Two databases were used in the training process: UAspeech [Kim et al. 2008] and Wall
Street Journal Database 1 (WSJ1) [Paul and Baker 1991]. The first contains dysarthric
speech, and the second was used for training maximum likelihood (ML) models with a
large number of parameters that require large amounts of data, and it does not contain
dysarthric speech. The sampling rate was fixed at 16kHz in both. Next we describe the
databases and explain how they were used in this study.

2.1. Universal Access Speech Database

This is a dysarthric speech database recorded from 19 speakers with cerebral palsy.
We had data available from 15 speakers. Data were recorded with an eight-microphone
array at 48kHz and one digital video camera. For each speaker, 765 words were recorded
in three blocks of 255. Of the recorded words, 155 are common to the three blocks
(from now on, we will refer to these as the common subset) and 100 are uncommon
words that differed across them (from now on, we will refer to these as the uncommon
subset). The 155-word blocks included 10 digits, 26 radio alphabet letters, 19 computer
commands, and the 100 most common words in the Brown corpus of written English.
To calculate the intelligibility rate of each speaker, five naive listeners were asked to
provide orthographic transcriptions of each word. The percentages of correct responses
for each speaker obtained by the five listeners were averaged to calculate the speaker’s
intelligibility. In Table I, a summary of each speaker in the database with his or her
intelligibility can be seen. For more information about the database, please refer to
Kim et al. [2008].

For our experiments, only microphone 6 was used, and two subsets were created:
train and test. For testing, we reserved the uncommon subset (300 words per speaker),
and for training, the rest (465 words per speaker). This configuration, proposed in Falk
et al. [2012], permitted us to make fair experiments because the tested words were
never seen during training.
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2.2. Wall Street Journal 1

WSJ1 is a general-purpose English, large vocabulary, natural language, high-perplexity
corpus containing a substantial quantity of speech data (77,800 training utterances
totaling about 73 hours of speech). It includes read speech and spontaneous dictation
by journalists. The database also contains development and testing datasets in a “Hub
and Spoke” paradigm to probe specific areas of interest. Each of them contains 7,500
waveforms—about 11 hours of speech. Data were collected using two microphones at a
sampling rate of 16kHz. For more information, please consult Paul and Baker [1991].

This database was selected because it contains a large amount of speech in Amer-
ican English, like UAspeech, so we could train our ML models described in the next
section—the Gaussian mixture model (GMM) and FA front-end—more reliably than
using only UAspeech. In addition, both databases mostly contain read speech (the
words in UAspeech are read from prompts). Only the clean speech of WSJ1 (from its
training, development, and testing parts) was used, which totals 73.84 hours.

3. SYSTEM ARCHITECTURE

The architecture presented next can easily be adapted to different applications. We
investigated two of great interest to the field of assistive technologies. In the first one,
the goal was to assess the intelligibility of dysarthric speakers after they uttered a
set of words. In the second one, the goal was to predict the Accuracy that a speech
recognizer would obtain for those speakers after they uttered those same words. In
our experiments, predictions were made over the uncommon subset of the UAspeech
corpus. These words (e.g., “naturalization,” “moonshine,” “exploit”) were selected from
children’s novels digitized by Project Gutenberg, using a greedy algorithm that maxi-
mized token counts of infrequent biphones. Thus, they are expected to generalize well
and be useful to provide significant metrics of the speakers. In the application training
process, they were never seen.

The major novelty of our proposal is that in both cases, the predictions are made from
iVectors, a compressed acoustic representation containing different aspects of speech.
From the viewpoint of a practitioner using assistive technology applications, the most
interesting characteristic of iVectors is that they capture the intelligibility information
of the utterance in a reduced set of measures. From the viewpoint of a researcher
building assistive technology applications, their most interesting characteristic is that
they are of fixed length and low dimension, and a whole utterance can be represented
by a single iVector independently of its duration. In our opinion, the most relevant
feature of our scheme was that it performed an efficient compression of the acoustic
parameters extracted from the speech while keeping the most important information
needed to make assessments. The system architecture is depicted in Figure 1. First,
PLP coefficients and energy, with their first and second derivatives, were extracted
from the speech. Then, a universal background model (UBM) with 1,024 components
was trained on WSJ1 and used to compute sufficient statistics of each utterance. Next,
the iVector extractor was trained with the sufficient statistics calculated for WSJ1.
Each iVector contained 400 speech measures. Finally, the iVectors obtained for the
UAspeech database were used for training and evaluating the predictor. In the next
sections, every component of the system is explained in detail.

3.1. Acoustic Features

Each audio file was parameterized into 12 PLP features plus energy, with derivatives
and accelerations, to obtain a 39-dimension vector every 10ms, in 25ms-length win-
dows. These features use three concepts of the psychophysics of hearing: the critical
band spectral resolution, the equal-loudness curve, and the intensity-loudness power
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Fig. 1. System architecture. PLPs and supervectors of WSJ1 were used to train the UBM and the iVector
extractor, respectively. iVectors of the training dataset of UAspeech were used to train the predictor. iVectors
from the uncommon subset of the UAspeech database were used for evaluating the system. This subset
included 300 words per dysarthric speaker, and each word was represented by one iVector.

law [Hermansky 1990; Moore 2003]. Previous investigations showed that there is infor-
mation about intelligibility in the short-term spectral content [Hosom et al. 2003], but
there was no a priori theoretical reason why PLP should work better than other com-
monly used features, such as mel-frequency cepstral coefficients (MFCCs). However,
there are works on speech intelligibility with pathological voices where PLPs offered
some advantages over MFCCs [Bocklet et al. 2009]. A reason could be that PLPs follow
the peaks of the spectrum better, thanks to the linear prediction (LP) analysis they
perform, what is known as the “peak-hugging” property of LP. Then, a better model of
the vocal tract transfer function is obtained [Makhoul 1975].

3.2. Gaussian Mixture Model and Sufficient Statistics

A GMM [Reynolds and Rose 1995] is a multimodal distribution typically used in speech
processing, where a fixed number of Gaussian components is combined to create a
distribution that would be difficult to parameterize with a single function. A GMM
was trained on WSJ1 by running 20 iterations of the expectation-maximization (EM)
algorithm [Dempster et al. 1977]. This model was our UBM. Once the UBM was trained,
zeroth (N)- and first (F)-order Baum-Welch statistics were obtained for each utterance
as follows:

Nk =
L∑

t=1

P(k|xt,�), (1)

Fk =
L∑

t=1

P(k|xt,�)xt, (2)

where L is the number of frames in a given file, and P(k|xt,�) is the posterior probability
of mixture component k generating the PLP vector xt, for a model with parameters �,
and K components. A simple intuition behind these vectors is that the zeroth-order
statistics count of how many PLPs were generated by each Gaussian component, and
the first-order statistics indicate the mean value of the PLPs that belong to each
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Gaussian component. The count in zeroth-order statistics is soft in the sense that
P(k|xt,�) is not 1 or 0, but is allowed to be any fractional value in between. This
means that each vector is not generated only by a single Gaussian component, but all
components are partly responsible for its generation. Supervectors of statistics were
subsequently built by concatenating the statistics of each Gaussian component.

3.3. Factor Analysis Front-End: iVector Extractor

FA arises as a method to compensate a GMM model for different effects that introduce
uncertainty in the speech signal, such as noise, channel, speaker, or the intelligibility
of the spoken utterance. In all cases, the underlying model generating the data will be
different. Nonetheless, there exists a background model common to all realizations—
the UBM—but for each particular case, we have to deviate from the UBM to better
match the model generating the current speech data. In other words, we have to add
something to the UBM and obtain a new model that better fits every particular speech
realization. Those deviations from the UBM contain the peculiarities of the speech
signal that we want to retain. They contain the specific information of that utterance
about the speaker, the channel, and the intelligibility with which it was uttered. How
we move apart from the UBM is (to some extent) what an iVector measures. Later,
depending on how we group iVectors, we can model one aspect of speech or another.
This is the reason iVectors have also been successful in many areas, such as speaker
identification [Dehak et al. 2011] or language recognition [Martı́nez et al. 2011].

More formally, the main assumption of our FA model was that every utterance s in the
database was generated by a different GMM, with mean supervector m(s) modeled as

m(s) = m0 + T i, (3)

where m0 is the mean supervector of the UBM, i is a latent variable that has an a priori
standard normal distribution N (0, 1), and T is a JxD matrix that translates iVectors
from their low-dimension total variability space to the high-dimension space where the
model m(s) lies, with D being the iVector dimension and J = 39xK being the dimension
of the supervectors. The iVector of utterance s was calculated as the expectation of the
posterior distribution of i given the sufficient statistics of the utterance [Dehak et al.
2011]. The main difference between the common formulation of FA [Bishop 2006] and
ours is that in the former, the latent variable changes for every frame, whereas in
our case, the latent variable is common to the whole utterance [Kenny et al. 2007].
In this way, we obtained a single vector per utterance, the iVector, that describes the
whole utterance, and not a vector for each frame within the utterance compensating
for the variability observed in that frame. The iVector contains information about the
variability observed in that utterance with respect to the entire database, and our
hypothesis was that intelligibility and information correlated to the accuracy of an
ASR system are partly responsible for such variability.

The training of T was done with the EM algorithm, alternating an ML step with
a minimum divergence step (MD), and the WSJ1 training data were used for this
purpose. By using only nondysarthric speech in the iVector extraction training, we
expected that high intelligible speakers would produce a small shift from the UBM,
and low intelligible speakers would produce a large shift from the UBM, which would
help to have more discriminative iVectors.

3.4. Predictor

The predictor was the block in charge of making assessments from iVectors. It can be
seen as a block that transforms the iVector associated with a given utterance into an
intelligibility rating or an Accuracy prediction. Note that the labels used in training
were the key information to make our system work as an intelligibility assessment
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system or as an Accuracy predictor. Thus, the predictor was the block responsible for
extracting the required intelligibility or Accuracy information from iVectors. Specifi-
cally, we used a ν-support vector regression (ν − SVR) predictor [Chang and Lin 2002;
Smola and Schölkopf 2004]. The basic idea of SVR is that only a subset of vectors that
are not farther than a given margin from the regression curve are used for training.
The approximating function is

f (x) =
N∑

i=1

α̂iφ(xi)T φ(x j) + b, (4)

where x is the target feature, α̂i is a scalar, b is a bias, N is the number of files in the
training dataset, and φ is the kernel, in our case a radial basis function, which allows
modeling of nonlinearities. The software LIBSVM was used to train the SVR predictor
and run tests with it [Chang and Lin 2011]. We set the parameters C = 1 and ν = 1. In
general, the system was stable in the range of values of C = 0.5 − 10 and ν = 0.1 − 1,
and the results were not very different within these intervals. Mathematical details
about the training of the regressor can be seen in the Appendix.

For training the predictor, we used the common subset of the UAspeech database,
which includes 465 words per speaker distributed in three blocks of 155 common
words. For evaluating the applications, we used the uncommon subset of the UAspeech
database, which includes 300 different words per speaker. For each word, one iVector
was extracted and passed directly to the regressor, either for training or testing.

4. APPLICATION EVALUATION METHODS

At the time of building an assistive technology application, it is common that we know
in advance the patients who will use the system. This is an ideal scenario because we
can use precollected data of those speakers to train our system. However, this is not
always the case, and in other situations we do not know who the users of our application
will be. Nonetheless, the system should guarantee a high performance in such cases
as well. Unfortunately, the performance is not the same. As we will see later in the
results, there is a significant difference between having and not having available data
of the people who will be evaluated by our system in the training dataset. Traditionally,
this second situation has not been studied in the literature due to the scarcity of data
and small size of the available databases, and in our experiments we reported results
for the two cases.

These two scenarios required two different training strategies. In the case where we
included data of the application user in the training dataset, a single predictor was
needed, trained on all the dysarthric speakers. In the case where we did not include
data of the application user in the training dataset, 15 predictors were built on a
leave-one-out strategy, with data of the rest of the dysarthric speakers.

Initially, the intelligibility assessment and Accuracy prediction applications were
addressed as a regression problem, in which the objective was to predict the exact
value of the intelligibility rating or of the Accuracy obtained by the speech recognizer
given as ground truth. The results obtained by this approach are very informative, since
the intelligibility and Accuracy scales are continuous, and any value between 0 (very
low intelligibility or Accuracy) and 100 (very high intelligibility or Accuracy) is possible.
However, there are different issues that can make continuous ratings misleading.
First, a single intelligibility rating per speaker is not a completely fair choice, because
the same speaker can utter different phrases with different levels of intelligibility.
Second, intelligibility is a subjective measure, and a fixed intelligibility rating cannot
be considered as a fixed gold standard, because the same utterance can have different
levels of intelligibility for different people. Third, large errors can cause great confusion

ACM Transactions on Accessible Computing, Vol. 6, No. 3, Article 10, Publication date: May 2015.



Intelligibility Assessment and ASR Accuracy Prediction for Dysarthric Speakers 10:9

to the clinician and make him or her believe that the result is much better or much
worse than it really is.

To overcome those troubles (at least partially), both tasks were also formulated as a
classification problem. An application that classifies intelligibility would just say if the
utterance had very low, low, mid, or high intelligibility, if four classes were possible.
Even simpler, it could just classify utterances into low or high intelligibility, if only
two classes were possible. The same for an Accuracy classifier. For the experiments,
the speakers were grouped into four or two classes according to their intelligibility or
Accuracy, by splitting the interval [0,1] into equal parts. Then, the classification was
made over the regression results by setting thresholds of 0.25, 0.5, and 0.75 for the
four-class problem and 0.5 for the two-class problem. Thus, if we obtained a regression
value of 0.60, it belonged to class mid in the first case and to class high in the second
case. Note that in this example, if the true rating were 0.70, it would not have counted
as an error in any of the two cases, whereas in the regression approach, the error would
not be 0. The classification task was only conducted for the case where we do not have
data of the application user to train the system.

The intelligibility and Accuracy assessments obtained with the regression system
were measured in terms of the following:

—Pearson correlation (r) is a metric that measures the linearity of the relationship
between two variables, with 1 meaning perfectly linear, 0 no linear relation, and –1
inverse linear relation. Given that our data were described with parametric models,
and that we pursued a linear relationship between rated and predicted intelligibility,
this type of correlation was appropriate for our problem. Its mathematical definition
can be found in Onwuegbuzie et al. [2007].

—Root mean square error (RMSE) is a measure of the real difference between the
predicted and rated values. The smaller this quantity, the closer our predictions are
to the subjective ratings. Its mathematical description can be found in Armstrong
and Collopy [1992].

—Error rate at 12.5% (error_rate12.5%) is a metric introduced in Martı́nez et al. [2013]
to overcome the subjectivity of intelligibility ratings made by the speech therapists.
It shows the percentage of utterances with a prediction error higher or lower than
0.125. The choice of 12.5% is selected to cover intervals including a 25% of the
continuous rating scale, the same margin that a hard four-class classification covers.
The difference with the four-class classification is that the intervals are not fixed and
depend on the target value. It is defined as

error rate12.5% = C+ + C−

N
, (5)

C+ = ∑
(predicted values > target value + 12.5%),

C− = ∑
(predicted values < target value − 12.5%),

N = number of test utterances.

Classification was measured in terms of weighted average precision and weighted
average recall. Precision measures the ratio of true positive outcomes and the sum
of all outcomes classified as positive (positive means classified as the class under
consideration)-that is, among all outcomes classified as a given class, what percent-
age really belongs to that class. Meanwhile, recall refers to the ratio of true positive
outcomes and all outcomes of that class. This measures the percentage of outcomes of a
class correctly classified. These two metrics were measured for each class individually.
To obtain a global measure for the system, we averaged the result of all classes, weight-
ing by the number of outcomes of each class. More information about these metrics can
be found in Sokolova and Lapalme [2009].
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Table II. Pearson Correlation (r), RMSE, and Error_Rate12.5% for the Intelligibility
Assessment System When We Had User Data Available in the Training Dataset

(Middle Column) and When We Did Not Have User Data Available
in the Training Dataset (Right Column)

User Data in Train User Data Not in Train
r 0.91 0.74

RMSE 0.14 0.23
Error rate12.5% 0.33 0.61

All preceding metrics were measured on a per-word (or per-utterance) basis. In
other words, Pearson correlation was computed over the intelligibility ratings of all
evaluated words; in RMSE and error_rate12.5%, we measured the error of the predic-
tion of each word with regard to its true label; and in classification, we counted the
times that each word was correctly assigned to its class. Finally, a single metric for the
whole system was obtained by averaging the results of all words. Additionally, we ob-
tained averaged results of the predictions for each speaker, as the ultimate goal of our
applications was to obtain intelligibility and Accuracy assessments for each evaluated
user.

5. EXPERIMENTS ON INTELLIGIBILITY ASSESSMENT

A computer application to automatically obtain intelligibility measures would bring
several benefits to clinicians, such as objectivity and replicability of results. It would
ensure that speech therapists from different places apply the same criteria to evaluate
intelligibility. In addition, clinicians can get used to the speech of their patients and
become more familiar with their manner of pronunciation, causing them to provide
higher ratings over time even when the speech has not changed. A computer application
would also avoid this problem. Intelligibility assessment is an important part in the
monitoring of a patient progress, and computers can contribute to perform this task
always with the same criteria and with no human subjectivity. In our experiments, we
compared an application that was trained with a dataset including prerecorded speech
of the evaluated user, with an application that was trained with a dataset without prior
information about the user.

5.1. Intelligibility Assessment by Regression

Regression results for intelligibility assessment clearly showed that it was very helpful
to count with data of the application user at the time of training the system. The results
of this situation are reported in the middle column of Table II; in the right column, we
can see the results when data of the application user were not included in training. As
we can see, the reduction in correlation and increase of RMSE and error_rate12.5% were
high. Two possible causes were responsible of this behavior, and both arose because
of the limitation of the UAspeech database. First, the system was not able to predict
intelligibility ratings not seen in training with the same accuracy. Given that we only
had 13 different intelligibility labels in the training dataset, if we removed one, the
system was not able to interpolate with the rest properly. Second, in the case where the
application user was included in the training dataset, the system was learning not only
intelligibility information but also the speaker identity. We had very few speakers, and
every speaker was uniquely associated to a single label; therefore, each label identified
uniquely to that speaker (except for speakers F04 and M11, and speakers M10 and
M08, who shared intelligibility rating).

To analyze the results of each speaker individually, the mean and standard deviation
of each speaker for the case where we used data of that speaker in the training dataset
are plotted (Figure 2) versus the case where we did not use data of that speaker for
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Fig. 2. Mean and standard deviation of intelligibility predictions for each speaker when user data were
included in the training dataset (straight) and x = y line (dash-dot).

Fig. 3. Mean and standard deviation of intelligibility predictions for each speaker when user data were not
included in training dataset (straight) and x = y line (dash-dot).

training (Figure 3). We clearly see that the second curve deviated further from the x = y
line (dash-dot curve). This was more dramatic for speakers with very low intelligibility.
One could think that this was due to having a UBM and an iVector extractor trained
without any dysarthric speaker. Then, the less intelligible speakers should have had
the least accurate predictions. However, the fact that mid intelligible speakers were
better modeled than high intelligible speakers contradicted this hypothesis. In the
future, we would like to try a middle solution between training the UBM only with
WSJ1 and only with UAspeech, such as a maximum a posteriori (MAP) adaptation
[Gauvain and Lee 1994] from the WSJ1 UBM using dysarthric speakers.

We must also take into account the data scarcity issue, and when we did not include
the evaluated speaker in the training dataset, we lost a nonnegligible part of the
training data. The consequences of this were even more important for the least and
most intelligible speakers, for whom the system could not interpolate with any other
speakers to learn their associated intelligibility. Therefore, including the test speaker
in training can be thought as an ideal scenario, where all speakers were perfectly
represented in the training dataset. This yielded optimal results, as observed.

Despite all of these problems, the correlation obtained for the case where we did
not include data of the application user in the training dataset was of about 0.74,
which can still be interpreted as a high correlation. The comparison in Table II could
be considered to be unfair, because in the case where we had data of the evaluated
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Table III. Four-Class Intelligibility Assessment Classification
Confusion Matrix in Percentage of Words

Label (↓)\Decision (→) Very Low Low Mid High
Very Low 31.76 57.69 10.19 0.37
Low 19.55 61.65 18.67 0.13
Mid 4.12 46.88 44.38 4.62
High 0.23 10.50 44.86 44.41

Table IV. Two-Class Intelligibility Assessment Classification
Confusion Matrix in Percentage of Words

Label (↓)\Decision (→) Low High
Low 85.94 14.06
High 25.89 74.11

speaker in the training dataset, we trained the predictor with more data compared to
the case where there was no information about the evaluated speaker in the training
dataset. To investigate this, we carried out a control experiment including information
of the application user, but where the amount of data was reduced (we removed the
same amount of data per speaker), to match that available for the case with no data
of the application user in the training part. The results showed no difference, and
r = 0.913 and RMSE = 0.140 were obtained in this scenario.

One interesting point would be to see if there were some words better predicted than
others, and to analyze if the best predictions came from particular word patterns. We
measured the difference between the rated and automatically predicted intelligibility
for each of the 300 tested words per speaker, and most of them were in the range of
0.14 to 0.24. The worst predicted words, with a mean difference computed over all
speakers higher than 0.25, were behavior, employment, scissors, aloft, booth, buffoon,
fishing, swoon, and ahead. The best predicted words, with a mean difference over all
speakers under 0.13, were Pennsylvania, advantageous, bloodshed, and designate. We
did not find any phonetic cue indicating that some patterns were better rated than
others. However, it seems that shorter words were more difficult to predict, although
there was no strong evidence of this.

5.2. Intelligibility Assessment by Classification

The problems associated with regression caused by having each speaker associated
with a unique intelligibility rating should be alleviated in a classification problem,
because several speakers with different ratings are grouped into the same class. In
addition, the interpolation of extreme intelligibility ratings should not be as crucial,
and it will be sufficient if the system learns that the iVector associated to an utterance
is close to others of the same class. The classification problem was conducted only for
the case where there was no data of the application user in the training dataset.

The results of the four-class classification problem are given in Table III in the
form of a confusion matrix. Encouragingly, the confusions primarily were made with
neighboring classes. This fact assures that there was no overtraining of any class. The
problem was difficult though, especially for the very low class, for which only 31.76%
of the files were correctly classified, and almost 60% of the files were confused with the
low class. The average weighted precision was 0.60, and the average weighted recall
was 0.44.

Given that there was still large confusions with neighbor classes, a simpler and more
reliable solution for real applications would be to just discriminate between high and
low intelligibility. As we can see in Table IV, the results of this scenario were much
better, but also note that the classes were twice as wide as for the four-class problem,
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Table V. Accuracy Labels and Assessments Per Speaker

No.
Speaker

Label

Speech
Intelligibility

(%)

Accuracy (%) in
Christensen
et al. [2012]

Mean Accuracy
(%) Assessment

User Data in
Train

Mean Accuracy
(%) Assessment
User Data Not

in Train
1 M04 Very low (2) 8.30 25.61 49.41
2 F03 Very low (6) 23.00 23.37 30.53
3 M12 Very low (7.4) 11.70 15.18 44.81
4 M01 Very low (15) 29.80 34.08 42.15
5 M07 Low (28) 66.90 55.12 35.43
6 F02 Low (29) 36.90 37.99 43.79
7 M16 Low (43) 49.30 49.61 48.82
8 M05 Mid (58) 53.40 53.12 51.95
9 F04 Mid (62) 65.60 61.71 53.47
10 M11 Mid (62) 53.00 52.07 54.30
11 M09 High (86) 81.50 72.39 54.65
12 M14 High (90.4) 74.90 72.39 71.59
13 M10 High (93) 86.20 78.19 69.50
14 M08 High (93) 81.80 76.32 70.95
15 F05 High (95) 89.60 80.77 68.97

Total 54.10 52.69 52.69
Note: In the first two columns, we have the speaker identification number and label. In the third column, we
have the speech intelligibility ratings given in the UAspeech database. In the fourth column, we have the
Accuracy labels obtained in Christensen et al. [2012] (our ground truth for the Accuracy prediction task).
In the fifth column, we have the Accuracy predictions obtained by our system when there was user data
available in the training dataset. In the sixth column, we have the Accuracy predictions obtained by our
system when there was not user data available in the training dataset. In the last row, we have the averages
obtained for the fourth, fifth, and sixth columns.

and hence the information given by the system was not as precise as the one given by
the four-class classification system. Both weighted precision and recall were 0.80.

6. EXPERIMENTS ON AUTOMATIC SPEECH RECOGNITION WORD
ACCURACY RATE ASSESSMENT

The interest of this application lies in obtaining confidence measures of ASR systems
that guarantee successful usage. ASR has the potential to be a very important human-
computer interaction mechanism for people with limited range of movements, as are
many people affected by dysarthria. Again, we compared the cases where data of the
application user were and were not available in advance for training. The only change
with respect to the intelligibility assessment experiment was the use of different labels
to train and test the system. Instead of the intelligibility ratings given by the UAspeech
database, our ground truth labels were the Accuracies obtained by the reference speech
recognizer, which was the mapSI2 system presented in Christensen et al. [2012]. That
was the best-performing system among 11 presented in that paper evaluating the same
dysarthric speakers as we did. In that work, the authors used data of the evaluated
speakers to build the recognizer and made a MAP adaptation to the final user. The
ground truth Accuracies for the 15 speakers of the UAspeech database are reflected in
Table V.

6.1. Word Accuracy Rate Assessment by Regression

In general, this task was more complicated than intelligibility assessment, especially
for the very low intelligible speakers, for whom better Accuracies than the real ones
were obtained. Observe in Table V that there were only three speakers with Accuracy
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Table VI. Pearson Correlation (r), RMSE, and Error_Rate12.5% for the Accuracy
Prediction System When We Had User Data Available in the Training

Dataset (Middle Column) and When We Did Not Have User Data Available in the
Training Dataset (Right Column)

User Data in Train User Data Not in Train
r 0.89 0.55

RMSE 0.12 0.22
Error rate12.5% 0.26 0.56

Table VII. Four-Class Accuracy Classification Confusion
Matrix in Percentage of Words

Label (↓)\Decision (→) Very Low Low Mid High
Very Low 9.95 64.18 25.62 0.25
Low 3.35 64.68 31.97 0.00
Mid 3.89 37.05 49.03 0.10
High 0.00 8.91 68.82 22.27

Table VIII. Two-Class Accuracy Classification
Confusion Matrix in Percentage of Words

Label (↓)\Decision (→) Low High
Low 71.07 28.93
High 26.81 73.19

below 25% (M04, F03, and M12); therefore, it was very hard for the regressor to learn
representative patterns of the lowest Accuracies. Note that in this case, the labels were
the result of the filtering process committed by the speech recognizer, which was not
error free. This means that the labels might not be completely accurate. Despite this
problem, when data of the application user were included in the training dataset, a
correlation of about 0.90 was obtained, as can be seen in the middle column of Ta-
ble VI. When no data of the application user were included in the training dataset,
the drop in the correlation was dramatic, and the RMSE and error_rate12.5% increased
significantly, as observed in the right column of the same table. However, RMSE and
error_rate12.5% were smaller than in the intelligibility assessment task. This result
could be misleading, because although the very low and very high predictions were less
accurate, we had fewer speakers labeled with these Accuracies; this caused a smaller
value of RMSE and error_rate12.5%. Consequently, the behavior of the intelligibility
assessment system was preferred, because the system was not biased to predict some
intervals more or less likely than others. In Table V, the results of the Accuracy pre-
dictions for each speaker are shown for the cases where the user data were and were
not present in the training dataset.

6.2. Word Accuracy Rate Assessment by Classification

The same problem as for the regression approach was observed in Accuracy classifica-
tion. The very low class was not modeled well, resulting in only 10% of the utterances
well classified in the four-class classification problem. In general, the system was bi-
ased to predict the low-mid interval, as can be seen by the confusions in Table VII. For
example, for the very low class, there were more words classified as mid than as very
low. An average weighted precision of 0.45 and a weighted recall of 0.37 were obtained.
Remember that the classification problem was conducted only for the case where data
of the application user was not included in the training dataset.

A more reliable solution was the system that classifies just between low and high. In
Table VIII, we have the confusion matrix of this two-class classification problem. In this
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Fig. 4. Matrix of average CDS calculated from iVectors among all possible intelligibility pairs. Each cell of
the matrix shows the average CDS of the intelligibility rating pair indicated by the corresponding row and
column. The whiter the cell, the closer the iVectors.

case, both weighted precision and recall were 0.72. These results confirm that Accuracy
prediction was more challenging than intelligibility assessment, in our opinion because
the labels were noisier due to the filtering process that the speech recognizer made.

7. ANALYSIS OF iVECTORS

It is interesting to observe the potential of iVectors and to know if the proposed method
is better than other techniques previously used in the literature. In this section, we
studied the goodness of iVectors and analyzed why we obtained the reported results.
Then, we compared the results with two systems without iVectors. In the first, we
extracted the mean of the PLPs of each utterance and assessed intelligibility directly
with the resulting set of coefficients. In the second, we used the supervectors calculated
with the UBM directly to make the assessments, similarly to Bocklet et al. [2012].

7.1. Goodness of iVectors

In this section, we discuss our analysis of the goodness of iVectors to do intelligibility
assessments, in which case we studied the similarity between iVectors extracted for
all intelligibility ratings. The basic idea was to see if iVectors of the same rating were
similar and how similar they were, and if iVectors of different ratings differed and how
much they differed. The metric used to measure this similarity was the cosine distance
scoring1 (CDS).

First, we computed CDS between all possible pairs of iVectors extracted from the
UAspeech database (including training and testing datasets). In other words, we mea-
sured the similarity between all words included in the database. Then, for every pos-
sible intelligibility pair, we averaged all CDSs calculated with all iVector pairs corre-
sponding to speakers rated with those two intelligibilities. The result can be seen in
Figure 4. We obtained a matrix where the average CDS among iVectors belonging to
the intelligibility rating i and the intelligibility rating j is shown in row ith and column
jth. Therefore, in the main diagonal, the CDS among iVectors belonging to the same

1For iVectors A and B, the CDS is defined as the cosine of the angle � between them, CDS = cos(�) = A·B
||A||||B|| ,

thus higher CDS means more similar iVectors.
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Table IX. Pearson Correlation (r), RMSE, and Error_Rate12.5% for the
Intelligibility Assessment System Based on PLP Means When We Had

User Data Available in the Training Dataset (Middle Column)
and When We Did Not Have User Data Available in the Training

Dataset (Right Column)

User Data in Train User Data Not in Train
r 0.83 0.28

RMSE 0.19 0.34
Error rate12.5% 0.45 0.77

intelligibility rating is plotted. Note that there were 15 speakers and 13 ratings, be-
cause there were two pairs of speakers sharing the same rating (F04 and M11, and
M10 and M08). The matrix is upper triangular to avoid replicating the information
twice. The lower part would be the upper part transposed.

It can be observed that the similarity between high intelligibility pairs was higher
(higher CDS) than that of the low intelligibility pairs—that is, the left upper part of
Figure 4 is lighter than the right lower part, which is darker. In addition, iVectors
belonging to high intelligibility ratings were not similar to those of low intelligibil-
ity ratings—that is, the right upper part is dark. As well, it can be seen that the
main diagonal decreases progressively from whiter to darker. This means that iVec-
tors belonging to high intelligibility ratings were more similar among themselves than
iVectors belonging to low intelligibility ratings. This is a normal behavior, as very se-
vere dysarthric speakers can produce very different sounds even when they want to
say the same word or sentence. This shows that the sound variability of very low
intelligible dysarthric speakers was higher than that of more intelligible dysarthric
speakers. Therefore, the progressive decrease of the CDS indicated that iVectors varied
consistently as we passed from high to low intelligibility. Ideally, we would like to have
a main diagonal as white as possible, indicating that iVectors belonging to the same
intelligibility rating are very similar. In conclusion, iVectors behaved as expected, and
they have the potential to be good features for intelligibility assessment. The results
will improve if we are able to obtain iVectors more similar when they belong to the
same intelligibility rating and less similar when they belong to different intelligibility
ratings. The difference between high and low intelligibility speakers arose as a natural
consequence of very low intelligible speakers being less consistent in their realizations.

7.2. Intelligibility Assessment with Perceptual Linear Prediction Means

The simplest approach to assess intelligibility that we could think of was to compute
the mean of the PLPs of each file and assess intelligibility with the resulting set of
coefficients. In this way, every word was represented by the mean of the PLPs, and that
mean was the input to the regressor. This allowed us to check if iVectors were really
keeping the important information while compressing the acoustic parameters. As we
can see in Table IX, for the case where user data were available in the training dataset,
the results with this method were worse than with the iVector system, but they were
still good. However, for the case where we did not include data of the application user
in the training dataset, the decrease in performance was dramatic. This confirmed that
iVectors were working.

7.3. Intelligibility Assessment with Supervectors of First-Order Statistics

Another interesting experiment to see if iVectors were really effective was to compare
the intelligibility assessment iVector-based system with a system where, similarly to
Bocklet et al. [2012], intelligibility was assessed directly with supervectors of first-
order statistics extracted with the UBM, as defined in (2). In this approach, the iVector

ACM Transactions on Accessible Computing, Vol. 6, No. 3, Article 10, Publication date: May 2015.



Intelligibility Assessment and ASR Accuracy Prediction for Dysarthric Speakers 10:17

Table X. Pearson Correlation (r), RMSE, and Error_Rate12.5% for the Intelligibility
Assessment System Based on First-Order Statistic Supervectors When We Had
User Data Available in the Training Dataset (Middle Column) and When We Did

Not Have User Data Available in the Training Dataset (Right Column)

User Data in Train User Data Not in Train
r 0.90 0.71

RMSE 0.15 0.24
Error rate12.5% 0.35 0.60

extractor block was removed from our scheme, but we did not get the same big com-
pression rates. The results are in Table X. As we can see, iVectors allowed increas-
ing the system performance, and even more important, they allowed a big reduction
in computational time and simplicity. The dimension of supervectors was very high
(1024 · 39 = 39936), and the regressor had more problems learning the important in-
formation. iVectors removed noisy information from supervectors and kept important
information, and this produced better results.

One interesting observation is that the system with PLP means as input behaved
well when there was user data available in the training dataset, but when there was
not, the results dropped dramatically. This might be an indication that when data of
the evaluated user was included in training, the system learned speaker information
that the PLP means efficiently collected instead of intelligibility information. However,
the iVector and supervector of statistics systems did not suffer such a dramatic drop.
This might suggest that these two approaches really learned intelligibility information.

8. DISCUSSION AND CONCLUSIONS

Two interesting assistive applications for people with dysarthric speech were proposed
in this article based on iVectors. The first had the goal of making automatic intelligi-
bility assessments of dysarthric speech. In our application, the intelligibility rating of
the person was made from a set of words not seen during the training process. The
importance of making automatic intelligibility assessment for clinicians monitoring
the progress of their patients is huge. It would allow making objective assessments
that are easily replicated. Furthermore, practitioners involuntarily get used to the
speech of their patients, and such a tool would avoid this problem. Unlike humans, our
application is not retrained every time the patient speaks.

The second application was designed to predict the Accuracy that a speech recognizer
will obtain for dysarthric speakers. Speech recognizers have a great potential to be used
by disabled people with a limited range of movements, as is the case for many dysarthric
speakers. They can serve as a human-computer interface when other common devices,
such as keyboards or mice, cannot be used. If predictions of how the speech recognizer
will perform for each user could be known beforehand, health costs and abandoned
usage rates would be diminished. As for the intelligibility assessment application, the
user only had to utter a set of words to obtain a prediction.

One of the main problems for the extension of voice interfaces for dysarthric speakers
is that they cannot use standard applications. Dysarthric speech contains a high degree
of variability, and such complicated inputs are very difficult to handle by current ASR
systems. Likely, the cheapest solution for this would be to convert the dysarthric speech
into a more intelligible one so that current ASR systems could understand it [Hosom
et al. 2003; Kain et al. 2007]. However, a technologically easier option is to train specific
systems for people with this type of disability. At the present time, some progress has
been made in this direction [Hamidi et al. 2010; Christensen et al. 2012]. Nevertheless,
we have to bear in mind that the extension of these applications will be limited to the
individuals for whom it was trained, and that they require a recording process, which is
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often hard and very exhausting for people with disabilities. Intelligibility assessment
can play an important role in these tasks. It can be used to determine if a dysarthric
speaker will be able to use a standard ASR system or if it is better to use a specific
application designed with consideration of his or her limitations. In that sense, this
functionality is similar to that given by an ASR Accuracy prediction application, but
at training the latter must decide the type of speech recognizer whose performance is
going to be predicted (global or specific for dysarthric speakers).

A very relevant conclusion of our work is that it is helpful to include precollected
data of the application user for training our applications. In a clinical environment, it
is common to know who will use the application in advance. However, this is an ideal
scenario that is not always possible. Unfortunately, when data of the application user
is not included for training, the performance of our systems dropped significantly. The
implications of these results are of great impact among researchers and practitioners.
They show a handicap for the extension of voice interfaces among dysarthric people,
and more effort is needed to improve results in such situations.

For the case of intelligibility assessment, the correlation between intelligibility per-
ceptual ratings and the automatic intelligibility assessments made by our application
fell from about 0.90, when we had user data available in the training dataset, down
to about 0.74, when we did not, whereas the RMSE increased from 0.14 to 0.23. The
assessments were worse for the very low and high intelligible speakers than for the mid
intelligible ones. One important reason was data scarcity, especially for the speakers
with extreme intelligibility ratings, because the regressor had no information of lower
or higher intelligibility ratings with which to interpolate.

For the case of Accuracy predictions, the correlation between the true scores obtained
with the speech recognizer and the automatically predicted Accuracies made by our
application fell from about 0.89, when we had user data available in the training
dataset, down to 0.55, when we did not, whereas the RMSE increased from about 0.12
to 0.22. In this case, worse results were also obtained for the speakers with very low
and high intelligibility, but especially for the very low, because there were only three
speakers in the database labeled with very low Accuracy, and the system did not have
enough information to model them properly. Moreover, for this application, the ground
truth labels came from the evaluation of a speech recognizer, which was not error free.
Hence, it is likely that these labels were not completely accurate.

iVectors were used as a method to compress the acoustic parametrization of the
signal. They capture many aspects of the speaker’s speech in a reduced set of measures,
in our work 400, instead of 39 PLP coefficients extracted every 10ms. Note that with
PLPs, we would have 390 parameters in only 100ms of speech. Their ability to capture
intelligibility information and the Accuracy that a speech recognizer would obtain was
shown with the experiments of this work. iVectors were extracted with an FA model.
The main difference between our FA and a traditional FA was that the variability
modeled in the low-dimension subspace is considered on a per-utterance basis instead
of a per-frame basis. That means that each audio recording was represented by a single
iVector. Thus, simple predictors can be used with them, such as ν-SVR.

Regarding the usefulness of iVectors, it was shown that they fulfilled the desired
conditions to capture intelligibility information. One interesting observation was that
iVectors belonging to low intelligible speakers were more different among them than
iVectors belonging to high intelligible speakers. This is due to the variability in the
speech production of severe dysarthric speakers, whose utterances can vary a lot from
realization to realization, even if they say the same word. Finally, iVectors were com-
pared with other approaches to assess intelligibility. The conclusion was that iVectors
kept better the important information to make intelligibility assessments and Accuracy
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predictions while performing a more efficient compression. Hence, we will continue our
research in this direction.

In the present work, the acoustic information was captured with the PLP coefficients.
These features are not especially designed for intelligibility assessment, and we think
that the results could be improved by adding other features more specific to this task.
However, our results were competitive and comparable to other works in the literature,
such as Falk et al. [2012], where r = 0.94 and RMSE = 0.186 were obtained over only 10
spastic speakers from the UAspeech database, using six features representing atypical
vocal source excitation, temporal dynamics, and prosody. In that work, the information
of the application user was also included in training.

APPENDIX

In this appendix, we include the dual formulation problem of ν − SVR [Chang and Lin
2002; Smola and Schölkopf 2004], defined as

min
1
2

(α − α∗)T Q(α − α∗) + yT (α − α∗)

eT (α − α∗) = 0, eT (α − α∗) ≤ Cν,

0 ≤ αi, α
∗
i ≤ C/N, i = 1 . . . N,

(6)

where N is the number of files in the training dataset; α and α∗ are Lagrange multipli-
ers; e is the vector of all ones; y represents the target values; C is the regularization
parameter; ν is a parameter that controls the number of support vectors and training
errors, and unlike ε-SVR [Smola and Schölkopf 2004], it avoids a direct selection of
the interval around the target values where errors do not count; and Qij ≡ φ(xi)T φ(x j)
is the kernel, with xi and xj the training features. A radial basis function is used as
kernel

φ(xi, x) = e−γ ||xi−x||22 , (7)

where γ = 1/D, with D the feature dimension. Then, the approximating function is

f (x) =
N∑

i=1

α̂iφ(xi)T φ(x j) + b, (8)

where α̂i = αi−αi
∗, x is the target feature, and b is a bias defined in the primal problem.
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