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Abstract
In this paper, we improve the performance of the ARGDMF [3] feature by adding a nonlinear filtering block. ARGDMF is a group delay-based
feature consists of four main parts, namely autoregressive (AR) model extraction, group delay function (GDF) calculation, compression, and
scale information augmentation. The main problem with the GDF is its spiky nature which is solved by coupling the GDF with an all-pole
model. The compression step includes two stages similar to MFCC without taking a logarithm of the output energies. The fourth part augments
the phase-based feature vector with scale information. The novelty of this paper is in adding a filtering block to compression process to make it
more efficient. This filter aims at elevating the performance of the ARGDMF via a more optimum dynamic range and formants sharpness
adjustment. The feature was evaluated on Aurora 2 database. In the presence of both additive and convolutional noises, the proposed method
noticeably outperforms the MFCCs and other phase-based features, without remarkable increase in computational load. 
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1. INTRODUCTION 
The Fourier  analysis  plays a major  role in  signal processing. It
returns  a  complex-valued  function  of  frequency  which  can  be
represented in polar coordinates in terms of magnitude and phase
spectra. For speech signals, the magnitude spectrum is believed to
carry the most important information while the phase spectrum is
thought to play a marginal role [1] because of lacking perceptually
important  information  and  noise-like  shape  which  limits  its
physical interpretation and mathematical modeling. 
    Most of the modeling techniques try to capture either the trend
or extrema which exists in the data. Such mathematical clues are
related closely to the physical properties of the underlying process
which  generates  the  data.  For  instance,  in  case  of  the  speech
signal,  the  magnitude  spectrum  trend  and  its  extrema  closely
pertain to the speech production system characteristics. The phase
spectrum, however, behaves ambiguously as in Figure 1.

                               (a)                                                        (b)

Figure 1.  (a) Magnitude spectrum, (b) phase spectrum.

  In an extensive set of experiments [2], we tried to reinvestigate
the information content of the phase spectrum from a perceptual
point  of  view.  The  speech  signal  was  reconstructed  from  the
phase-only  and  the magnitude-only  spectra  and  the information
content of each spectrum was estimated based on the distance of
the  reconstructed  signal  from  the  original  signal.  The  more
similarity, the higher the information. For gauging the similarity a
perceptually motivate measure was employed. The results showed
that contrary to the prevailing belief, there is notable information
in the phase. 
     The next step is to take advantage of such information for
practical applications. To do so, a novel phase-based front-end was
proposed in [3]. The proposed features afford significantly better
performance under noisy condition than the MFCC (baseline). On
average,  up  to  15%  higher  recognition  rates  were  attained
(absolute). In this paper we add a nonlinear filtering block to the
proposed method in [13] in order to improve the recognition rates.

This  filter  adjusts  the  dynamic  range  and  bandwidth  of  the
formants.
     The rest of this paper is structured as follows. In Section 2,
the block diagram of the proposed feature extraction method is
presented  and  explained.  Section  3  includes  the  results  and
discussion and Section 4 concludes the paper.

2. WORKFLOW OF THE PROPOSED METHOD
Figure 2 illustrates the block diagram of the suggested algorithm.
As  seen,  the  feature  extraction  starts  with  pre-emphasis  and
windowing. For pre-mephasis, a single-zero FIR high-pass filter
with a zero at  r(1)/r(0) was used (r(k) denotes autocorrelation
sequence and k is the lag). For windowing, a Chebyshev window
with 30 dB dynamic range was applied. In [2], it is shown that
this  window  maximizes  the  quality  of  the  phase-only
reconstructed speech. 
     The next step is signal modeling. An autoregressive (AR)
model was extracted from each frame through LPC method. The
AR  model  provides  a  reasonable  estimate  of  the  vocal  tract
characteristics.  Next,  the group delay of the parametric model
(AR) was computed. The main problem with applying the group
delay in speech processing is its spiky nature due to the zeros
introduced by the excitation component of the speech which are
close to the unit circle. 
     MODGDF [4] and CGDF [5] are two proposed solutions to
this  issue.  None  of  them  provide  notable  improvement  over
MFCCs,  however. Coupling the GDF with the AR model will
alleviate the aforementioned problem. It also paves the way for
taking advantage of the high resolution property of GDF. Figure
3  illustrates  the  power  spectrum and  different  variants  of  the
GDF in clean and noisy (10 dB) conditions.

Figure 2. Block diagram of the proposed method.
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Figure 3. Various group delay-based representations. (a) clean signal, (b) noisy
signal (additive white Gaussian noise, SNR: 10 dB).

   The next step is compression which aims at representing each
frame with fewer samples  and  also  limiting the dynamic range
while  preserving  all  significant  information.  To do  so,  the  mel
filterbank is employed. As well, we take the DCT of the energies
of  the  filterbank outputs  and  retain  the  first  12  coefficients.  In
contrast  to  MFCC,  logarithm  was  not  taken  from  the  output
energies.  There are two main reasons  for  taking  the  logarithm:
compressing the dynamic range; and converting the multiplication
between the source and filter components into the addition. This
paves  the  way  for  homomorphic  processing  of  the  speech  and
helps in separating the excitation and vocal tract components. The
convolution in time domain will be equivalent to the addition in
group delay domain not multiplication. In addition, the dynamic
range of the group delay coupled with LPC (all-pole)  model is
limited (Figure (3)). For better adjustment of the dynamic range
we added a nonlinear filter as follows 

ene2=ene1
α                                                            (1)

where  ene1 and  ene2 denote the input (energy) and output of the
filtering  block,  respectively  and  α is  compression  factor.  By
decreasing this  coefficient the bandwidth of the spectrum peaks
(formants)  increases  and  the  dynamic  range  reduces.  Our
simulation  results  indicate  that  the  optimum  value  for  α over
Aurora  2  [6]  database  is  0.85.  Finally,  the  feature  vector  is
augmented with the scale information [3] which is computed by
Hilbert  transform  relations.  The  proposed  method  is  called
ARGDMF.  

3. Experimental Results and Discussion
The  performance  of  ARGDMF  was  assessed  on  the  Aurora  2
database  [6].  Aurora2  includes  three  test  sets  which  A and  B
include additive noises while the C test set contains both additive
and convolutional distortions. We have used clean-data training in
all our experiments and HMMs were trained with HTK [7]. Table
1 and Figure 4 show the results. 
     As seen, the proposed method both on average and at each
SNR  returns  significantly  better  performance  than  the  other
techniques. The reason backs to the capability of this feature in
coping with the noise. Figure 3 shows the spectrum distortion due
to  the  noise  in  ARGD  is  less  than  the  other  methods  which
indicates its higher robustness. As seen in Table 1 the proposed

modification improves the results without introducing noticeable
computational overhead. 

                                  (a)                                                                 (b) 

Figure  4.  Recognition rates as a function of SNR. In all cases, the feature
vector consists of 36 coefficients including their static (12), Delta (12), and
Acceleration (12) forms. (a) test set A, (b) test set C. To avoid clatter we have
just plotted one of the ARGDMF variants.

Table 3: Average (0-20 dB) word accuracy in percent.
TEST SET

A
TEST SET

B
TEST SET

C
MFCC-D-A 62.7 66.9 60.0
MODGDF-D-A 64.0 67.7 62.6
CGDF-D-A 63.1 67.8 61.9
ARGDMF1*-D-A 74.7 77.9 75.6
ARGDMF2*-D-A 75.5 78.6 76.4

* ARGDMF1: without filtering, ARGDMF2: with Filtering.

4. Conclusion
In  this  paper  we  have  added  a  nonlinear  filter  to  the
parameterization algorithm proposed in [3]. This block aims at
improving  the  performance  of  the  ARGDMF  [3]  by  further
adjustment  of  the  sharpness  of  the  resonance  frequencies
(formants) and compression of the dynamic range. Looking for
more optimum filters could further elevate the performance of
the proposed feature and increase its robustness against additive
and convolutional noises.
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