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Abstract. In this paper we propose a statistical-based parametrization
framework for representing the speech through a fixed-length supervector
which paves the way for capturing the long-term properties of this signal.
Having a fixed-length representation for a variable-length pattern like
speech which preserved the task-relevant information allows for using a
wide range of powerful discriminative models which could not effectively
handle the variability in the pattern length. In the proposed approach,
a GMM is trained for each class and the posterior probabilities of the
components of all the GMMs are computed for each data instance (frame),
averaged over all utterance frames and finally stacked into a supervector.
The main benefits of the proposed method are making the feature extrac-
tion task-specific, performing a remarkable dimensionality reduction and
yet preserving the discriminative capability of the extracted features.This
method leads to an 7.6% absolute performance improvement in compari-
son with the baseline system which is a GMM-based classifier and results
in 87.6% accuracy in emotion recognition task. Human performance on
the employed database (Berlin) is reportedly 84.3%.

Keywords: Discriminative model. Emotion recognition. Feature extrac-
tion. Generative model. Speech signal

1 Introduction

Speech is the most natural way of human communication. It reflects many as-
pects of us and this turns it into a complicated signal which as well as its lingual
content, encodes a wide variety of information including environmental and
speaker-dependent information like identity, emotional state, accent, dialect, age
and health condition. These components of the speech are combined through
a complicated process and disentangling such a complex signal into the afore-
mentioned underlying dimensions is a challenging yet interesting task from both
signal processing and machine learning points of view.

In this regard, the main problem is that such attributes are subjective in
essence and developing an objective model or method for capturing them is
difficult. In fact, other than very general clues about the aforementioned prop-
erties in the time and frequency domains, we do not have any particular extra
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information to steer the hand-crafted deterministic parametrization algorithms
to the right direction. As a result, in a wide range of applications in speech
processing, MFCC serves as the swiss-knife army of this field and is used as
the main feature representation despite the fact that it is basically proposed for
speech recognition [5]. That is why the general tendency is to put the back-end
at the center of attention for building a system in different applications.

Typically, pattern recognition systems consist of two main blocks, namely the
front-end and back-end [6]. The front-end is tasked with extracting a representa-
tion of the data in which the task-pertinent attributes are preserved/enhanced
and the irrelevant/misleading aspects of the data are filtered/weakened. This
process, among other steps, requires data filtering in a very high-level domain
where each attribute occupies a particular subspace. So, the front-end ideally
should do information filtering in the information space and it turns out to be
very challenging. The reason backs to the fact that such information space is
categorically abstract and subjective. Therefore, mathematical underpinning of a
mapping which takes the data from the low-level quantitative domain to such a
high-level qualitative/subjective space is extremely complicated.

In this paper, we aim at enhancing the conventional feature extraction process
with an interface which to some extent contributes toward conducting information
filtering. This interface is a generative model which targets learning a task-
dependent representation. As well, it affords further dimensionality reduction
and renders a fixed-length representation for speech. This paves the way for
the discriminative model employed at the back-end to return more accurate
results because most of these models cannot effectively deal with the variable
length patterns like speech. In the emotion recognition task, such coupling of the
generative and discriminative models results in up to 7.6% performance elevation
in comparison with the GMM-based classifier and leads to 87.6% accuracy which
is higher than the reported human performance (84.3%) on the this task and
database [3].

The rest of this paper is organized as follows. In Section 2 the main difficulties
and issues in extracting hand-crafted features are reviewed and discussed. The
proposed parametrization method is introduced and explained in Section 3.
Experimental results are presented and analyzed in Section 4 and Section 5
concludes the paper.

2 Feature Extraction

Feature extraction (also known as parametrization or front-end) bears the task
of converting the sensory data into a sequence of numbers which should preserve
the relevant information in a compact way and discards the irrelevant and
misleading aspects of the data. As well, the front-end should present the data
in an appropriate way. Since its output serves as the input of the back-end,
parametrization process output should be in harmony with the assumptions that
the back-end makes about its input. For instance, a back-end with a probabilistic
basis makes some statistical assumptions about the distribution of its input.
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Coherency of the fed features with such expectations would substantially affect
the overall performance and efficacy of the system.

Having a fixed back-end, different parametrization algorithms, could be
assessed through three main criteria, namely discriminability, robustness and
complexity. Discriminability is about the capability of the front-end in extracting
features with both high intra-class similarity and inter-class dissimilarity. It
could be evaluated by using the train data as the test data. Robustness relates
to the ability of the feature in handling a reasonable amount of noise and/or
mismatch between the test and train conditions. It is a challenging issue and
could be assessed by using unseen/noisy data. Complexity is connected to the
computational load of the feature extraction process and the lower the better.

Another important issue in feature engineering is that the output of the
designed algorithm should be task-dependent because the target attribute and
consequently the focus of the front-end for each application is different. That
is, by setting the aim of a system to capture one of the speech properties, say
speaker’s emotional state, all the other elements like lingual content, speaker
ID, etc. are turned into noise and should be suppressed. In practice, the ideal
emotion recognition system should be able to recognize the emotion regardless of
the speaker identity, lingual content and background noises.

Presence of irrelevant/misleading factors poses two main problems. First,
learning the structure of the target attribute(s) under the existence of the other
irrelevant attributes will be more difficult due to the clutter which they arise in
the information space and it leads to hindering the learning process. Second, even
if the system performs relatively well across the seen data during training, its
accuracy over the unseen data would be strictly questionable. The reason backs
to the fact that the misleading components would highly restrict the situation
where the system performs well and the performance becomes oversensitive to
any mismatch even in irrelevant traits. As a result, the generalization will be poor
and any mismatch with the training condition, even in the irrelevant aspects,
would noticeably degrade the accuracy and reliability of the system. To overcome
these issues, the front-end should be able to filter out the misleading/irrelevant
characteristics and only passes through the pertinent properties.

However, such filtering is not straightforward. As a matter of fact, it takes
place in a conceptual space where each attribute presumably occupies a distinct
subspace. This high-level information domain does exist based on what we
subjectively perceive from the speech signal. However, expressing it in an efficient
objective/mathematical way which allows for filtering nuisance characteristics and
only permitting the relevant dimensions is highly challenging, if not impossible.
That is why most of the researches in the pattern recognition field are focused
on the back-end and less attention is paid to the front-end.

Dealing with these issues, researchers tended to develop techniques for learning
the proper representation instead of using hand-crafted features. Currently, one
of the very active branches of Machine Learning is Deep Learning via deep neural
networks (DNN) which essentially solve the problem of data representation [1].
In other words, they learn a transform (or a set of transforms) that represents
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the input data in the most suitable way based on the task requirement. However,
for efficient training of such models which have enormous parameters, a huge
amount of data and computational power are required. Although the later is
no longer an impeding factor, the former is still troublesome at some fields. For
example, in the task of emotion detection from speech, most of the available
databases are not sufficiently big and do not allow for employing models with
too many variables.

3 Proposed Method

As mentioned, feature learning under having limited data is problematic. However,
due to lack in practical clues for engineering the feature extraction process
for capturing the most pertinent aspects of the signal, we need to carry out
a feature learning to steer the parametrization process toward a right task-
dependent direction and avoid passing through irrelevant dimensions. In this
section, we introduce our proposed method which serves as an interface between
the conventional front-end and the classifier.

3.1 Workflow

Figure 1 shows the main parts of the proposed approach. First, each speech
waveform is converted into a feature matrix, X, a D − by − N matrix where
D is the dimension of the feature vector and N is the number of frames of the
utterance. We have used MFCC, although any feature may be utilized at this
phase. Then, all the available class data is pooled for training a GMM with
M Gaussians in order to estimate the corresponding distribution. After training
a GMM for each class, the posterior probability of each component, p(mk|X, θc),
is computed, where mk and θc denote the kth Gaussian (component) and GMM’s
parameter set of class c, respectively.

In the next step, the posterior probabilities of each GMM are averaged over
all frames of the utterance as follows

p(mk|X, θc) =
1

N

N∑
n=1

log[p(mk|xn, θc)] (1)

where xn represents the feature vector of the nth frame of the utterance. Posterior
probability can be computed based on the Bayes’ rule as follows

p(mk|xn, θc) =
p(xn|mk, θc) p(mk|θc)

p(xn|θc)
=

p(xn|mk, θc)p(mk|θc)
M∑
k=1

p(xn|mk, θc)p(mk|θc)
(2)

where p(xn|mk, θc) is the likelihood of the xn (nth frame) given themth component
of the GMM of the class c. The likelihood is computed based on the multivariate
Gaussian distribution as follows
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Fig. 1. Workflow of the proposed method. C and M denote number of classes and
number of mixture components, respectively.

p(xn|mk, θc) =
Hc

k√
(2π)d

exp(−1

2
(xn − µc

k)THc
k(xn − µc

k)) (3)

where µc
k and Hc

k denote the mean vector and precision (also known as concen-
tration) matrix of the kth component of class c, respectively.

After working out p(mk|xn, θc) for all components of all the GMMs and aver-
aging over all utterance frames, the final feature vector is built by concatenating
all the posterior probabilities in a supervector as follows

super vector = [ p(m|X, θc1)T , p(m|X, θc2)T , ..., p(m|X, θcC )T ] (4)

where C denotes number of classes and

p(m|X, θci)T = [ p(m1|X, θci), p(m2|X, θci), ..., p(mM |X, θci) ]. (5)

As a result, the speech signal will be represented by a fixed-length supervector
which its length is C times M .

3.2 Advantages

As well as, representing the speech signal through a fixed-length pattern, the
proposed theme has four main advantages

– First, it is no longer a general non-flexible feature extraction algorithm like
MFCC. In comparison with the hand-engineered deterministic structure of
the conventional front-ends, it has the spirit of the statistical feature learning
paradigm. Such approach allows for learning some aspects of the data which
are important for classification but we do not have any clear clue of them in
order to somehow embed them in the parametrization workflow.
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– Second, this approach provides an effective framework for capturing the
long-term properties of the speech like emotion. From statistical standpoint,
unlike the lingual content which changes on a short-term basis, the speaker-
dependent attributes are fairly stationary during the utterance. As a result,
it is more sensible to steer the front-end toward extracting features which
reflect the long-term properties of the speech in tasks like emotion recognition.
However, due to the non-stationarity of the speech and the Fourier transform
limitation, we have to stick to the short-term processing. The proposed
method paves the way for extracting the long-term properties of the speech
from the short-term frame-based processing. This is due to the fact that
the GMMs are trained based on all the frames of all the utterances of
each class, without taking the timing issue into account. The underlying
premise for validity of this argument is that the process to be modelled
does not change in statistical term across the training data which holds
with a reasonable approximation. In the second place, the supervector is the
outcome of averaging over all the utterance frames. These two factors make
the supervector highly correlated with the long-term properties of the signal
which the GMMs are trained to capture them.

– Third benefit is further dimensionality reduction. In fact, instead of repre-
senting the speech via a matrix with D (typically 39) times N elements,
the signal is represented with M times C elements which is by far more
compact. As seen, the length of the supervector is no longer a function of
neither the feature dimension nor the number of frames. As a result, a very
lengthy and comprehensive feature set may be employed without increasing
the computational load at the back-end.

– Since the supervector is built by stacking the posteriors of each class, it can
be imagined that each class occupies a particular subspace in the feature
space. This potentially enhances the discriminative capability of the extracted
features and provides a better ground for the discriminative model to adjust
the decision borders between the classes.

3.3 Comparison with UBM-GMM

Using universal background model (UBM) forms the status quo in the GMM-based
feature extraction, in particular for speaker recognition [17]. In the UBM-based
approach, at first, all the available training data is pooled and a shared universal
model is trained for all the classes as the background. Then, for each utterance
and through MAP adaptation [12], the parameters of the background model
are modified and the supervector is built by stacking the mean vectors of all
the Gaussians of the adapted model (Figure 2). As a result, the length of the
supervector would be M times D which in comparison with the proposed method
(M times C) is noticeably higher for applications where number of classes are
lower than the feature vector length. Emotion and environment detection are
examples of such scenarios although in the task of speaker recognition it may not
be the case. One solution for this issue is to do the classification on a hierarchical
basis. As such at each level, number of the categories to be classified would be
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much less and this smooths the way for effective employment of the proposed
method.

On the other hand, since the background model is trained with all the available
data of all classes, the required number of gaussians for having a reasonable
estimate of the corresponding distribution is expected to be higher than the
components of a GMM which is trained for a single class. Another issue is that
the adaptation process is done for each utterance, and the amount of the data
provided by each signal is not enough for efficient model adaptation given the
cardinality of the parameter set of the UBM. As well, the adaptation process has
some hyperparameters such as relevance factor [17] which should be adjusted
and there is no guarantee that the optimum value remains the same over all the
classes and utterances. However, the proposed approach does not involve any
adaptation and/or particular (hyper)parameter setting other than the number of
mixture components.

Fig. 2. Framework of the UBM-GMM method.

3.4 Dimension of the Supervector and Curse of Dimensionality

Having a long feature vector along with a probabilistic model runs the risk of
facing with the curse of dimensionality. However, the issue is more manageable
as far as the classification is done with a discriminative model. This backs to the
fact that in such models only subspaces around the decision borders are taken
into account which has a rather low volume and lack of data for covering the
space is less problematic. In fact, this issue is more serious in case of working with
generative models which consider the region inside each class borders because it
could have a massive volume in the high-dimensional space and is really difficult
to be covered by the limited available training data. As a matter of fact, for
the SVM classifier (which we have used as the back-end) only the borders and
particularly support vectors are concerned. As a result, the volume that should
be covered would be much smaller and lack of training data and working in the
high-dimensional space due to using a supervector is less an issue.
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4 Experimental Results

4.1 System Setup

A wide variety of features and classifiers have been used in emotion classifica-
tion. On feature side, pitch and energy (mean, max, median, variance, etc.) [21],
LPCC [20], wavelet [11], sub-band filtering [9], RASTA-PLP [19] and modulation
spectrum [22] have been utilized. On the back-end also a wide range of meth-
ods like GMM [2, 10], HMM [15, 18], Neural Networks (NN) [8, 14], K-nearest
Neighbours (kNN) [7] and support vector machines (SVM) [4, 20] have been
employed. We have used MFCC as the feature extraction algorithm along with
the log-energy, delta and delta-delta coefficients. Frame length, frame shift and
number of filters was set to 25 ms, 10 ms and 25, respectively, and Hamming
window was applied. Window length in computing both delta and delta-delta is
set to 1. It was observed that this setting for computing the dynamic coefficients
returns better results in comparison with 2 for delta and delta-delta which is
typically used in speech recognition setup. For classification at the back-end,
SVM with RBF (radial basis function) kernel is employed. Slack variable and
gamma coefficient of the kernel were set to 12 and 2, respectively.

It should be noted that the SVM could not handle variable length patterns
efficiently and removing the interface block noticeably degrades its performance.
In fact, without a fixed-length representation, the SVMs should be trained by
each individual frame. One problem is that the amount of emotion-correlated
information within a frame is not enough for effective emotion discrimination. On
the the other hand, for classification, the decision should be made on a frame-wise
basis and the class with maximum bincount would be the output of the classifier.
This strategy is called Max-Wins voting and as well as the problem of making
decision based on short-term observations, it suffers from the issue that all the
frames either discriminative or non-discriminative would have the same weight
in the voting and consequently decision making. This could negatively affect the
performance of the system, however, the proposed approach does not suffer form
such issues.

The GMM and SVM were trained using Scikit-learn package [16]. A GMM
classifier is used as the baseline system. It includes 25 Gaussians, trained with
5 iterations based on EM algorithm and the covariance matrix is full. Publicly
available Berlin emotional database (Emo-DB) [3] has been used which includes
7 acted emotions, namely Anger (A), Boredom (B), Disgust (D), Happiness (H),
Fear (F), Sadness(S) and Neutral (N). It consists of 535 signals and 10 speakers
(5 male and 5 female) who are professional actors read the predefined sentences in
an anechoic chamber, under supervised conditions. Sampling rate of the signals
is 16 kHz with a 16-bit resolution. A human perception test to recognize various
emotions with 20 participants resulted in a mean accuracy of 84.3%.

4.2 Performance Evaluation

For evaluation, 5-fold cross-validation has been used. The confusion matrices
of all folds were added together and from the resultant confusion matrix four
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performance metrics were computed which are Accuracy, Recall Rate, Precision
and F-measure (also known as F − score or F1score). Assuming the rows of the
confusion matrix determine the actual class and its columns show the predicted
class, these measures were computed as follows

conf mat =

5∑
fold=1

conf matfold (6)

Accuracy =

C∑
c=1

conf mat(c, c)

C∑
i=1

C∑
j=1

conf mat(i, j)

(7)

Recall(c) =
relevant class patterns ∩ retrieved class patterns

relevant class patterns

=
TruePositive

TruePositive + FalseNegative
=

conf mat(c, c)
C∑

j=1

conf mat(c, j)

(8)

Precision(c) =
retrieved class patterns ∩ relevant class patterns

retrieved class patterns

=
TruePositive

TruePositive + FalsePositive
=

conf mat(c, c)
C∑
i=1

conf mat(i, c)

(9)

F −measure(c) = 2
Recall(c).P recision(c)

Recall(c) + Precision(c)
(10)

Accuracy is an overall performance measure and Recall Rate, Precision and
consequently F-measure are defined for each class. In fact, they are originally
designed for binary classification. For more details about these measures readers
are referred to [13].

4.3 Results and Discussion

Table 1 and 2 show the confusion matrices of the baseline and the proposed
systems, respectively. As seen, the errors which the systems make are not similar
which imply that by combining these two approaches via an appropriate framework
better results may be achieved. In case of the proposed method, confusion is less
and the main misclassification occurs between the Happiness and Anger. This
error could be alleviated by doing a hierarchical classification.

Table 3 and 4 show the performance metrics of the baseline and proposed
method. As seen, the accuracy of the suggested system is noticeably higher than
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the baseline. However, accuracy on its own is not enough for precise comparison
of two systems and other factors such as precision and recall should be taken
into account as they further clarify the type of errors which the system make.
One important advantage of the proposed method is that the recall rate and
precision are very closed to each other whereas in the baseline system (GMM-
based classifier) the difference is noticeably higher. It should be noted that the
recall and precision are inversely proportional and improving one would degrade
the other. In an optimal setup they should be high and as close as possible
which leads to having the maximum area under curve (AUC). This also results
in having a higher F-score as it is the harmonic mean of the precision and recall.
Harmonic mean is smaller than both geometric and arithmetic means and is
close to the minimum of its inputs. So, as far as one of the metrics is too small,
regardless of the goodness of the other one, the F-score would be poor. Therefore,
the optimum performance in terms of the F-measure would be achieved if both
recall and precision are high and almost equal. This is another point which shows
the optimality of the proposed approach.

An important issue from practical standpoint is that how such approach can
be extended to applications where there is a data stream. In such cases, the
basic premise of the proposed method which was the stationarity of the speaker-
dependent attribute across the signal is violated. In order to deal with this issue,
one could decompose the stream into (overlapping) segments with an appropriate
length. As such, instead of representing the whole utterance with a supervector,
each chunk is buffered and represented by a supervector and the decision is
taken locally for each sub-utterance. Some segmentation algorithms may be
used depending on the task which allow for having an adaptive variable-length
buffers. As well, if the task allows a finite-state machine may be employed for
handling the transitions between the outputs of the system (labels of segments)
using the previous local decisions (history) and some prior knowledge. This could
contribute toward alleviating the errors that potentially occur in chunking the
data stream (having more than one class within a segment) and improving the
accuracy of the system.

Table 1. Confusion matrix of the base-
line system.

A B D F H S N

Anger 123 0 1 0 3 0 0
Boredom 0 61 1 0 0 5 14
Disgust 4 3 37 0 0 0 2
Fear 5 0 2 45 11 4 2
Happiness 29 0 0 2 39 0 1
Sad 0 1 0 0 0 60 1
Neutral 0 16 0 0 0 0 63

Table 2. Confusion matrix of the pro-
posed method.

A B D F H S N

Anger 113 0 1 2 11 0 0
Boredom 0 76 0 0 1 1 3
Disgust 2 2 36 1 1 1 3
Fear 2 0 0 63 0 1 3
Happiness 16 0 2 4 47 0 2
Sad 0 1 0 0 0 60 1
Neutral 0 4 0 0 1 0 74
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Table 3. Performance of the baseline
system.

Recall Precision F-measure

Anger 96.9 76.4 85.4
Boredom 75.3 75.3 75.3
Disgust 80.4 90.2 85.1
Fear 65.2 95.7 77.6
Happiness 54.9 73.6 62.9
Sadness 96.7 87.0 91.6
Neutral 79.8 75.9 77.8

Average 78.5 82.0 79.4

Accuracy 80.0

Table 4. Performance of the proposed
method.

Recall Precision F-measure

Anger 89.0 85.0 86.9
Boredom 93.8 91.6 92.7
Disgust 78.3 92.3 84.7
Fear 91.3 90.0 90.7
Happiness 66.2 77.1 71.2
Sadness 96.8 95.2 96.0
Neutral 93.7 86.1 89.7

Average 87.0 88.2 87.4

Accuracy 87.6

5 Conclusion

In this paper, we proposed an interface block between the front-end and the
back-end which is based on a generative (GMM) model and leads to a fixed-length
representation for speech, filtering out the unwanted attributes, extracting a long-
term feature from the signal, further dimensionality reduction and yet preserving
the discriminative information. It paves the way for efficient classification through
discriminative models like SVMs and results in an 7.6% absolute performance
improvement. The main error which the proposed system makes during the
classification is confusing the Anger and Happiness emotional states. Devising a
hierarchical classification strategy could help in dealing with this issue. Using
modulation spectrum, extending the feature vector with prosodic features and
training the GMMs discriminatively could contribute toward improving the
accuracy of the proposed method.
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