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ABSTRACT

In earlier work we proposed a framework for speech source-filter
separation that employs phase-based signal processing. This paper
presents a further theoretical investigation of the model and optimi-
sations that make the filter and source representations less sensitive
to the effects of noise and better matched to downstream processing.
To this end, first, in computing the Hilbert transform, the log function
is replaced by the generalised logarithmic function. This introduces
a tuning parameter that adjusts both the dynamic range and distribu-
tion of the phase-based representation. Second, when computing the
group delay, a more robust estimate for the derivative is formed by
applying a regression filter instead of using sample differences. The
effectiveness of these modifications is evaluated in clean and noisy
conditions by considering the accuracy of the fundamental frequency
extracted from the estimated source, and the performance of speech
recognition features extracted from the estimated filter. In particu-
lar, the proposed filter-based front-end reduces Aurora-2 WERs by
6.3% (average 0-20 dB) compared with previously reported results.
Furthermore, when tested in a LVCSR task (Aurora-4) the new fea-
tures resulted in 5.8% absolute WER reduction compared to MFCCs
without performance loss in the clean/matched condition.

Index Terms: phase spectrum, source-filter separation, group delay,
generalised logarithmic function, regression filter

1. INTRODUCTION

Phase spectrum is not an obvious starting point for speech process-
ing. In contrast to the magnitude spectrum whose fine and coarse
structures have a clear relation to speech perception, the phase spec-
trum is difficult to interpret and manipulate. In fact, there is nei-
ther a meaningful trend nor extrema which may facilitate the mod-
elling. Nevertheless, the speech phase spectrum has recently gained
renewed attention. For example, it has been the focus of a special
session in Interspeech 2014 [1], a tutorial session in Interspeech
2015 and a special issue in Speech Communication journal [2]. An
increasing body of work is showing that the phase spectrum can
be employed in a multitude of speech processing applications, in-
cluding in speech enhancement [3-5], speech reconstruction [6—10],
speech recognition [11-16] and speaker recognition [17].

Now that the potential for phase-based speech processing has
been established, there is a need for a fundamental model to help
understand the way in which it encodes speech information. In this
respect, we proposed a phase-domain source-filter model that allows
for deconvolution of the vocal tract (filter) and excitation (source)
components through phase manipulation [18]. This model shows
how the excitation and vocal tract elements mix in the phase domain
and provides a mathematical framework for segregating them.

In this paper we aim at further elaboration and optimisation
of the proposed model to facilitate a more robust fundamental fre-
quency (Fp) estimation from the source element while obtaining

j.p.barker, o.saztorralba, t.hain}@sheffield.ac.uk

better performance in ASR from the filter part. In this regard, the
computation of the phase spectrum by the Hilbert transform is mod-
ified: the generalised logarithmic function is used in place of the
standard log function. This function provides one degree of freedom
which can be tuned in order to achieve a better dynamic range (DR)
and statistical distribution. Moreover, in computing the group delay
(GD), a regression filter has been employed instead of the sample
difference. By considering a wider context, estimation of the deriva-
tive becomes more accurate and further robust. It was observed
that the first and second modifications are particularly useful in
representing the vocal tract and excitation components, respectively.

The rest of this paper is organised as follows. Section 2 briefly
reviews the phase-based source-filter model. Section 3 describes the
proposed modifications. Section 4 presents and discusses experi-
mental results and Section 5 concludes the paper.

2. PHASE-BASED SOURCE-FILTER SEPARATION

Speech is a mixed-phase signal [9] as its complex cepstrum (CC)
is neither causal nor anti-causal [19]. Therefore, it can be divided
into minimum-phase (MinPh), Xrinpn(w), and all-pass (AlIP),
X aup(w), components

X (w) = Xuminpr(w) Xaup(w)
|X (w)] = | Xuminpn(w)] (1)
arg[X(w)] = arg[Xnminpn(w)] + arg[Xaup(w)]

where |X(w)| and arg[X(w)] indicate the magnitude and un-
wrapped (continuous) phase spectra, respectively.

Since vocal tract (Xvr(w)) and excitation (X gzc(w)) compo-
nents are convolved in the time domain', the magnitude spectrum
(|X (w)]) is the product of the corresponding magnitude spectra.
Given that | X (w)| is only linked to the MinPh part, it holds that

| X(W)] = [Xvr(Ww)| [XEec(W)| = [Xminpr (W) (2)

Based on causality of the CC for MinPh signals, the Hilbert trans-
form provides a one-to-one mapping between magnitude and phase
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arg[Xminpn(w)] = log| X minpn(w)] * cot( 5 3)
where * denotes convolution. By replacing the log|X arinpn(w)|
with log| X (w)], arg[X ainpr(w)] can be calculated. Equivalently,
the computation may be performed in the cepstrum domain by ap-

plying a causal lifter (Fig. 1) [19]. Substituting (2) into (3) yields

arg[Xminpn(w)] = *%ZOQUXVT(WN | X Bac(w)[} * Cot(%)
= arg[Xvr(w)] + arg[Xgzc(w)], )

IThis is true under the assumption that the acoustic system is linear and
the glottal source and vocal tract filter are independent and do not interact.
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Fig. 1. Phase-based source-filter decomposition proposed in [18].
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Fig. 2. Phase filter-based feature extraction proposed in [18].

which shows that the source and filter are additive in the (continuous)
phase domain. As illustrated in [18], arg[X arinpr(w)], in contrast
to the wrapped phase (ARG[X (w)]), is no longer chaotic and can be
understood as a superposition of two components: a quickly oscil-
lating Fluctuation, modulated by a slowly varying Trend. As shown
in [18], Trend and Fluctuation correspond to the vocal tract (V1)
and excitation (Ezc) parts, respectively.

In addition to the source and filter elements (embedded in
Xuminpn(w)), the speech signal also includes timing information
which captures the corresponding temporal evolution. This aspect is
encoded in the AlIP part and resides uniquely in the phase spectrum.
Since speech is processed in short frames (in which stationarity
holds), the frame index can be taken as a proxy for the timing infor-
mation. However, for mid/long-term processing, the importance of
such information and usefulness of the AlIP part increases.

For evaluating the effectiveness of the proposed method in ASR,
a simple feature (named BMFGDVT [18]) was extracted from the
filter component of the phase (Fig. 2) and tested in an ASR system.
On average, it showed better performance than conventional well-
known features on Aurora-2 task (Table 1).

3. IMPROVED SOURCE FILTER SEPARATION

3.1. Generalised Logarithmic Function
Based on the classic definition of the Hilbert transform, arg[ X arinpn]
is computed through (3). Here, we modify this and instead of log,
utilise the generalised logarithmic function (GenLog) [20]

{GenLog(x;a) =1@*-1), >0 a#0

5
limg 0 GenLog(z; a) = log(x), ©)

where « is its parameter. In the Statistics literature, this function is
known as the Box-Cox transformation [21]. It unifies the power and
log transforms and is helpful in improving the Gaussianity.
GenLog(z; «) provides one degree of freedom that allows two
main properties of the representation to be adjusted, namely its DR
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Fig. 3. Effect of using GenLog(| X |) in the Hilbert Transform at the
clean and noisy (Babble, 5 dB) conditions. (a) arg[X ainpr]-clean,
(b) arg[X ainpn]-noisy, (c) arg[Xvr]-clean, (d) arg[Xvr]-noisy
(e), Tvr-clean, (f) Ty r-noisy.

and statistical distribution. Fig. 3 shows that by increasing «, the
DR of the representation gets larger. It should be noted that for the
magnitude-based features, the power spectrum which has a high DR
is fed into the filter bank (FB) and then the compression is carried out
through power transformation (log is its special case). If the order
of compression and FB is swapped in the pipeline, the performance
will degrade sharply. However, in case of the proposed phase-based
feature, 7y (w) which has a limited DR (comparable to log| X (w)[)
enters the FB. Similar to the magnitude-based features this could be
costly performance-wise.

Contrary to the magnitude spectrum, DR of the GD is not re-
lated to the signal energy level at different bins. It depends on the
relative location of the poles/zeros with respects to the unit circle.
Zeros located next to the unit circle (primarily associated with the
excitation component) increase the DR of GD and make it too spiky
if left uncontrolled. By removing the source part, the spikiness issue
is greatly alleviated but the DR of the GD is significantly reduced,
too (Fig. 3 (e) and (f)). Tuning « allows the DR of Ty 7 (w) to be
adjusted without increasing the spikiness. Another advantage of us-
ing the GenLog relates to the noisy condition where contamination
with noise results in DR reduction. Increasing v counters this effect
of the noise and consequently improves the robustness (Fig. 3).

Rewriting (4) using the Gen Log function yields

@79 Xatinpn () 6] = — 51| Xyr(@)|” [ Xpee(w)[* * cot(%).

(6)
Although the GenLog function adds flexibility to the framework,
based on (6), it poses a substantial problem: the useful additive rela-
tionship between the source and filter resulting from the log function
(eq. (4)) is replaced with multiplication (eq. (6)). This could hin-
der source and filter separation because the Trend-plus-Fluctuation
premise is undermined. However, as seen in Fig. 3(a), as long as «
is set to a sufficiently small value, e.g. 0.1, the Trend and Fluctua-
tion remain quasi-additive. While given (6) this may seem counter-
intuitive, Maclaurin series expansion of function f(a) = 2%, where
z = | Xvr(w)| | X Ezc(w)|, shows the reason

fla) =1+ alogz + a’(log z)* + ... @)
~1+alogz =14 a(log|Xvr(w)|+ log| X gzc(w)]).

As far as @ < 1, nonlinear terms in (7) remain negligible and

the Trend-plus-Fluctuation assumption stays reasonable. Therefore,

« should be set large enough to supply a sufficient DR but small
enough to avoid the violation of the quasi-additive combination.



3.2. Group Delay

Group delay (GD), 7x (w), is defined as the negative spectral deriva-
tive of arg[X (w)]. High resolution and additivity are two important
advantages when working with this function [16] but spikiness is
a major problem. Cepstral smoothing [16], chirp processing [15]
and signal modelling [12] have been used for addressing this issue.
However, what makes the GD a special representation for the phase
spectrum is that (if its spikiness issue is resolved) it resembles the
magnitude spectrum. As a result, one of the key problems with
phase, i.e. ambiguous shape, will be solved allowing a wide range
of magnitude-based methods to be employed.

3.2.1. Usefulness of Group Delay

While the bulk of GD-related research is concerned about circum-
venting the spikiness, an important question is overlooked: why does
GD bear a resemblance to the magnitude spectrum? In other words,
among all the possible mathematical representations for the (un-
wrapped) phase spectrum, what is special about its derivative which
renders the foregoing useful similarity?

The answer stems from the way in which information is encoded
in the phase spectrum. Contrary to the magnitude spectrum where
information is distributed in the amplitude values, in the phase do-
main it resides in the level-crossing structure. For the sake of argu-
ment let’s consider a simple single-pole (re??) function where infor-
mation means r and . For the magnitude spectrum, the bin in which
the maximum occurs gives 6 and the corresponding amplitude value
determines r. In the phase domain, however, the bin at which zero-
crossing takes place yields 6 and the slope at that point gives r.

Loosely speaking, in the magnitude spectrum the information
appears in an amplitude modulation (AM) format whereas for the
phase spectrum it looks like frequency modulation (FM) where in-
formation gets encoded in the slopes rather than amplitude values.
By computing the derivative, similar to FM demodulation through
discriminator (aka slope detector) [22], the information would be
demodulated and moved into the amplitude domain. This pushes
the overall structure of the GD toward an AM signal, similar to
the magnitude spectrum, and consequently facilitates the interpre-
tation/processing.

3.2.2. Computing the Group Delay

Since the phase of the DFT is a discrete sequence, numerical differ-
entiation is typically approximated by a finite difference (di f f). The
1st-order diff, as is typically used, is intrinsically noisy. We propose
to fit a line (regression filter [23]) to a short spectral interval around
each bin and take the slope as the GD

ko m arg[X[k+m
Tx[k‘] _ _Em:7k0 - g[ [ + ”7 (8)
> j0:7 ko J 2

where k and 7x denote the discrete frequency and GD, respectively,
and 2ko + 1 is the length of the context in frames. The regression
filter has a bandpass frequency response, contrary to the sample dif-
ference which acts like a high-pass filter. Increasing ko lowers the
high cut-off frequency and smooths the 7x.

Note that effect of the regression filter on the GD of VT is lim-
ited as this component is the output of a low-pass filter (Trend Ex-
traction), and its high-frequency content is already weak. However,
it is especially effective for applications that employ the excitation
component. As illustrated in Fig. 4(d), this approach allows accurate
fundamental frequency extraction from the speech phase spectrum.

To further clarify this point, Fi was estimated by computing the
argmazx of the summation residual harmonic (SRH) function [24]
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Nharm

SRH (k) = Tpee(k) + Y [TBec(mk) — Tac((m — 0.5) k)]

m=2

(&)
where Npqrm denotes the number of harmonics and is set to 5 here.
Figure 5 depicts the pitch estimated using (9) versus ground truth
values taken from [25] in clean and noisy (Gaussian white, 5 dB)
conditions. As seen, ko has a substantial impact on the accuracy and
robustness of the phase-based pitch extraction process and can lead
to a reliable phase-based Fp estimation.

3.3. Non-linearity

In general the nonlinear compressive function applied to the filter
bank energies (FBE) mimics the human auditory system’s conver-
sion of sound pressure into loudness and is usually implemented
through the power transformation. From a machine standpoint, it is
important for reshaping the distribution of the features. For phase-
based features, a power transformation cannot be used directly since
the admissible range is restricted to positive values whereas the FBEs
may become negative if the filter bank is fed with GD.
Bickel and Doksum [26] modified the power transform (Gen Log)

such that it could also operate on negative values as follows

_ sign(x)|z]” -1

v
where sign( . ), | . | and  are the signum function, absolute value
and the parameter of the transform, respectively. —1 from the nu-
merator and « from the denominator may be removed without loss

of generality as they do not change the class discriminability of the
features. That is why in [16, 18] only sign(x)|z|” has been used.

; 10)



Comparing (5) and (10) shows that both o and ~ have the same
statistical functionality. As such, keeping both is redundant and one
of them may be eliminated. Based on the argument propounded in
Subsection 3.1. regarding the DR, we omit the non-linearity block
placed after the filter bank (or integrate it into the GenLog).

4. EXPERIMENTAL RESULTS AND DISCUSSION

4.1. Parametrisation

For evaluating the effectiveness of the proposed modifications on
the robustness of the filter components a number of ASR experi-
ments were carried out on Aurora-2 [27] and Aurora-4 [28]. For
Aurora-4 HMMs were trained with 16 components per mixture and
all acoustic models were standard phonetically state-clustered tri-
phones trained from scratch using a standard HTK regime [29]. De-
coding was performed with the standard Sk-word WSJO bigram lan-
guage model. The evaluation set of Aurora-2 consists of 10 test sets,
grouped into A, B and C where A and B only contain additive noises
and C includes both additive and channel distortions. Aurora-4 has
14 test sets, grouped into 4 subsets: clean, (additive) noisy, clean
with channel distortion, noisy with channel distortion, that will be
referred to as A, B, C and D, respectively. For the DNN part, the
network consists of four hidden layers with 1300 nodes, followed by
a bottleneck (BN) [30] layer containing 26 nodes placed before the
output layer. The network was trained using TNet [31] and standard
HMM-GMM models were trained on the BN features. In Trend Ex-
traction, L (Fig. 1), was set to 4’;50, where f5 is the sampling rate in
Hz. Features are mean normalised and augmented by the log-energy
(E) along with delta (D) and acceleration (A) coefficients.

4.2. Discussion
4.2.1. Connected-digit task: Aurora-2

For conducting a fair comparison, the effect of replacing log with
GenLog in the MFCC pipeline (generalised-MFCC [32]), was also
evaluated. It is denoted by v-MFCC in Table 1 and results in a sig-
nificant increase in performance in noisy conditions, although in the
clean condition log is a better option. Choosing an appropriate value
for  plays a key role and on average, 0.075 turned out to be an
optimal choice. In the proposed feature,  and ko should to be
tuned. Table 1 shows that the optimum value for « is around 0.1
(a-BMFGDVT-0.1) and it provides a significant WER reduction and
robustness improvement compared with the previous version which
was applying the log function (BMFGDVT).

The effect of using the regression filter for computing GD is
shown in the last part of Table 1. Here, v is fixed to 0.1. Setting
ko to 2 or 3 provides optimal results although, due to the reasons
presented in Section 3.2, it has a limited influence on the filter com-
ponents. In general, compared with other phase-based features, the
proposed filter-based representation shows a superior performance.
Fig. 6 illustrates the WER versus SNR and shows that the advantage
of the proposed modifications is greatest in SNRs below 15 dB.

4.2.2. LVCSR+DNN

In order to further investigate the capabilities of the proposed
parametrisation scheme, the Aurora-4 database was also used.
First, HMMs were trained using only clean data. As seen in Ta-
ble 2, despite returning notably better results in the noisy condition
(5.8% absolute WER reduction, on average), the proposed feature
(a-BMFGDVT-0.1-2) in the clean condition performs as well as
MEFCCs. Finally, BN features were extracted from the proposed
phase-based representation and MFCCs in multi-style trained mode.
Although in such circumstance MFCC work quite well, the proposed
feature slightly outperforms it.
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Fig. 6. Performance of different features vs SNR for Aurora-2 task
(averaged over all testsets).

Table 1. WER (average 0-20 dB) for Aurora-2 [27].

Feature ‘ TestSet A [ TestSet B [ TestSet C
MFCC-E-D-A 32.7 27.5 34.0
v-MFCC-0.075 24.6 23.8 23.1
PLP 32.7 294 33.8
MODGDF [16] 35.7 33.6 40.5
CGDF [15] 33.0 27.0 40.6
PS [14] 34.0 28.8 354
ARGDMF [12] 24.6 21.0 24.0
BMFGDVT [18] 268 | 226 | 266
a-BMFGDVT-0.12 22.8 20.8 20.7
a-BMFGDVT-0.1 22.1 19.5 20.5
_o-BMFGDVT008 | 223 | 193 | 210
a-BMFGDVT-0.1-1 21.7 19.2 20.3
a-BMFGDVT-0.1-2 21.5 18.9 20.3
a-BMFGDVT-0.1-3 21.5 18.8 20.5
Table 2. WER for Aurora-4 [28].
Feature ‘ A| B | C | D | Ave
MFCC [Clean] 74 | 345 | 294 | 50.3 | 39.0
Proposed [Clean] 7.1 | 26,5 | 28.1 | 45.1 | 33.2
BN-MFCC [Multi] | 7.2 | 129 | 143 | 27.0 | 18.7
BN-Proposed [Multi] | 7.0 | 12.7 | 143 | 26.6 | 18.4

5. CONCLUSION

In earlier work we developed a framework for source-filter separa-
tion through phase-based speech processing. This paper aimed at
further clarification of the theoretical aspects of the proposed frame-
work and also improving the efficacy and robustness of the extracted
source and filter components. In this regard, the formula of the
Hilbert transform was altered by substituting the log with GenLog,
group delay was computed through a regression filter instead of sam-
ple difference and a nonlinearity block was integrated into GenLog.
The proposed modifications enable the tuning of the dynamic range
and statistical properties of the excitation and vocal tract represen-
tations and improve the robustness. The filter-based feature pro-
vided better performance than MFCCs in both Aurora-2 connected-
digit and Aurora-4 LVCSR tasks. Combining both the phase and
magnitude-based features in a DNN-based setup is an avenue for fu-
ture research. The pilot Fp extraction tests from the phase source
component in both clean and noisy conditions also appeared to be
highly promising and establishes another direction for future works.
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