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Abstract
Vector Taylor Series (VTS) is a powerful technique for ro-
bust ASR but, in its standard form, it can only be applied to
log-filter bank and MFCC features. In earlier work, we pre-
sented a generalised VTS (gVTS) that extends the applicabil-
ity of VTS to front-ends which employ a power transformation
non-linearity. gVTS was shown to provide performance im-
provements in both clean and additive noise conditions. This
paper makes two novel contributions. Firstly, while the previ-
ous gVTS formulation assumed that noise was purely additive,
we now derive gVTS formulas for the case of speech in the
presence of both additive noise and channel distortion. Second,
we propose a novel iterative method for estimating the channel
distortion which utilises gVTS itself and converges after a few
iterations. Since the new gVTS blindly assumes the existence
of both additive noise and channel effects, it is important not to
introduce extra distortion when either are absent. Experimen-
tal results conducted on LVCSR Aurora-4 database show that
the new formulation passes this test. In the presence of channel
noise only, it provides relative WER reductions of up to 30%
and 26%, compared with previous gVTS and multi-style train-
ing with cepstral mean normalisation, respectively.
Index Terms: robust speech recognition, generalised Vector
Taylor Series, Channel noise estimation

1. Introduction
Automatic speech recognition (ASR) performance in a noise-
free condition can reach human parity [1, 2]. In noisy con-
ditions, if sufficient data can be collected from conditions
that match the test scenario then state-of-the-art performance
is achievable using DNN-based techniques in either front-end
[3, 4] or back-end [5–7]. However, in many situations matched
training data is not available and purely data-driven approaches
perform poorly. Therefore, it is worthwhile, from both a theo-
retical and practical standpoint, to consider how to build robust
systems using only clean training data.

Vector Taylor Series (VTS) [8] is a well-established and
powerful technique for robust ASR with formulations that al-
low it to be applied in either the feature [9] or model [10] do-
mains. It has a well-principled foundation and rests on reason-
able assumptions. Taylor series expansion is employed to lin-
earise the nonlinear relationship between the clean and noisy
representations. This allows the distribution of the noisy ob-
servations to be estimated and for the effects of the noise to
be compensated. In its standard form, VTS is only applicable
to features which use log for compressing the filter bank en-
ergies (FBE). In [11] we replaced the log with the generalised
logarithmic function (GenLog) function [12] and called it gen-
eralised VTS (gVTS). This modification resulted in significant
performance improvement in both clean and noisy conditions
and extended the applicability of VTS to features which use a

power transformation nonlinearity, e.g. PLP [13], generalised-
MFCC [14], PNCC [15] and phase-based features [16–21].

The previous formulation of gVTS was based on the as-
sumption that the signal is only contaminated with additive
noise. For dealing with the channel noise, geometric mean nor-
malization (GMN) was utilised which is equivalent to cepstral
mean normalisation (CMN). It is deterministic in essence and
hence, unlike statistical methods, is unable to model the vari-
ability induced by noise.

In this paper, we extend the formulation of gVTS assuming
that both additive and channel noises are present. The new for-
mulation requires an estimate of the channel noise (a challeng-
ing problem that is less studied than additive noise estimation).
We present an iterative approach to this problem. Experimental
results shows up to 30% and 26% relative WER reduction in
dealing with channel noise compared with the previous GMN-
based approach and multi-style training results, respectively.

The rest of this paper is organised as follows. In Section
2, the noise compensation process through gVTS is presented.
Section 3 explains the proposed channel estimation approach.
Section 4 contains experimental results along with discussion
and Section 5 concludes the paper.

2. Noise Compensation through gVTS
2.1. Generalised Logarithmic Function

The main idea behind gVTS is to replace the log with GenLog{
GenLog(z;α) = 1

α
(zα − 1), z > 0 α 6= 0

limα→0 GenLog(z;α) = log(z),
(1)

where α is its parameter and when α approaches zero,GenLog
converges to log. In the Statistics literature, this function is
known as the Box-Cox transformation (BCT) [22]. It unifies
the log and power transformation (zα), and is claimed to be
helpful in enhancing the linearity, Gaussianity and homoscedas-
ticity [22]. Substituting the log operation with GenLog in the
MFCC framework yields generalised MFCC (gMFCC) [14]. As
shown in [11] α has a substantial impact on the distribution of
the filter bank energies (FBE) and can improve the WER in the
noisy conditions. These properties foster using this transform.

2.2. Environment Model
Let’s consider Y = XH + W as the environment model
where Y , X and W denote the power spectra of the noisy ob-
servation, clean speech and additive noise, respectively, and H
is the squared magnitude spectrum of the channel. Taking the
GenLog from both sides yields

Y̆ = X̆ H̆ (1 + (
W̆

X̆H̆
)

1
α )α (2)

where Z̆ = Zα for Z ∈ {Y,X,H,W}. As seen, the clean
representation (X̆) is distorted by a distortion function, G,
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Figure 1: Elements of the noise compensation process.

G(X̆, H̆, W̆ ) = H̆ (1 + (
W̆

X̆H̆
)

1
α )α, (3)

and the higher the SNR, the closer the G to unity. The overar-
ching goal of the noise compensation process is to counter this
function and extract an estimate of X̆ from Y̆ .

2.3. Noise Compensation

Fig. 1 depicts the elements of the noise compensation process
which contains four parts: the statistical models of the clean
data and noises, the estimation criterion and the compensation
block. For modelling the distributions of the clean features and
noises (both additive and channel), usually a GMM with M
components and a single Gaussian are used, respectively,

X̆ ∼
∑M
m=1 px̆(m) N (µX̆m,Σ

X̆
m)

W̆ ∼ N (µW̆ ,ΣW̆ )

H̆ ∼ N (µH̆ ,ΣH̆)

(4)

where M , px̆(m), µ and Σ denote the number of components,
weight, mean vector and covariance matrix, respectively. One
advantage of using GenLog over log is that α greatly affects
the distribution of FBEs [11] such that adjusting α can make
the feature distribution more Gaussian-like. This leads to im-
proving the fit of the data to the Gaussian models.

The statistical models could be learned either in the fre-
quency domain (GenLog of FBEs) or in the cepstrum domain
(DCT of the GenLog of FBEs). Since the covariance matri-
ces are assumed to be diagonal, modelling and compensation
in the cepstral domain is more favourable. However, a GMM
with a diagonal covariance matrix can still effectively model
the distribution of correlated features at the cost of increasing
M which, in turn, entails more training data to avoid the over-
fitting. As shown in [11] compensation in both domains returns
almost equally good results.

Minimum mean square error (MMSE) is usually employed
as the estimation criterion

X̆MMSE = E[X̆|Y̆ ] =

∫
X̆ p(X̆|Y̆ )dX̆ (5)

where E denotes the expected value. Rewriting (5) using (2),
(3) and some algebraic manipulation yields

X̆MMSE =

∫
Y̆

G(X̆, H̆, W̆ )

M∑
m=1

p(X̆|m) p(m|Y̆ ) dX̆

= Y̆

M∑
m=1

p(m|Y̆ )
1

G(µX̆m, µH̆ , µW̆ )
, (6)

and the only missing part for evaluating (6) is p(m|Y̆ ).
It is usually assumed that Y̆ has a GMM distribution with

M components, similar to X̆ . Using Bayes’ rule

p(m|Y̆ ) =
py̆(m) N (µY̆m,Σ

Y̆
m)∑M

m′=1 py̆(m′) N (µY̆m′ ,ΣY̆m′)
(7)

which, in turn, translates the problem of computing p(m|Y̆ )

into that of finding the distribution of Y̆ , specifically, py̆(m),
µY̆m and ΣY̆m. Another assumption is that Y̆ and X̆ are jointly
Gaussian within each mixture component and py̆(m) ≈ px̆(m).
For computing µY̆m and ΣY̆m, the statistics of Y̆ should be com-
puted given those of X̆ , H̆ and W̆ . However, due to the nonlin-
earity in (2) this can not be done analytically.

2.4. generalised VTS (gVTS)

Using the first-order Taylor series, the relationship in (2) can be
linearised and consequently the statistics of Y̆m can be calcu-
lated. It runs as follows

Y̆ ≈ Y̆ (X̆0, W̆0, H̆0) + JX̆(X̆ − X̆0)

+ JW̆ (W̆ − W̆0) + JH̆(H̆ − H̆0) (8)

where JZ is the Jacobian matrix of Y̆ with respect to Z (Z ∈
{X̆, H̆, W̆}) and (X̆0, W̆0, H̆0) denotes the point around which
Y̆ is linearised. Linearisation is performed around the mean
values, namely (µX̆m, µH̆ , µW̆ ) which will be M points alto-
gether. Therefore, the Jacobians should be evaluated at each
point. With some algebraic manipulation it can be shown that

JX̆m =
∂Y̆

∂X̆

∣∣∣∣
(µX̆m,µ

H̆ ,µW̆ )

= diag{µH̆ (1 + V̆m)α−1} (9)

JH̆m =
∂Y̆

∂H̆

∣∣∣∣
(µX̆m,µ

H̆ ,µW̆ )

= diag{µX̆m (1 + V̆m)α−1} (10)

JW̆m =
∂Y̆

∂W̆

∣∣∣∣
(µX̆m,µ

H̆ ,µW̆ )

= diag{(1 + V̆m

V̆m
)α−1} (11)

where diag
[
z
]

turns vector z into a diagonal matrix and

V̆m = (
µW̆

µX̆m µH̆
)

1
α . (12)

Having evaluated the Jacobians, µY̆m and ΣY̆m can be calculated

µY̆m ≈ µX̆m µH̆(1 + (
µW̆

µX̆mµH̆
)

1
α )α (13)

ΣY̆m ≈ JX̆mΣX̆mJ
X̆
m

T

+ JW̆m ΣW̆ JW̆m
T

+ JH̆m ΣH̆ JH̆m
T

. (14)

For mathematical convenience, ΣY̆m is assumed to be diago-
nal. Extension of the modelling to the cepstrum domain can be
easily carried out similar to the previous formulation of gVTS
[11]. Since the overall performance does not differ, for saving
space only the frequency-domain formulation is provided here.

Discarding the nonlinear terms in first-order VTS intro-
duces some error. To reduce this error, in [23], second-order
VTS was proposed. It can be shown that the magnitudes of the
nonlinear terms are proportional to the eigenvalues of ΣY̆m to the
power of n, where n is the order of the nonlinear term. By in-
creasing the number of Gaussian components, M , these values



– and consequently the contribution of nonlinear terms – be-
come very small. So, first-order VTS using sufficient number of
Gaussians is a reasonable approximation. gVTS has another ad-
vantage from this perspective: the nonlinear terms are inversely
proportional to α. An easy way to verify this point is to set α
to one in (2) which yields a linear relationship. So, by increas-
ing this parameter the error associated with VTS linearisation
decreases. Increasing α too much, however, does not have a
constructive effect on the statistical modelling of the FBEs.

3. Channel Estimation
Channel noise estimation is a challenging problem and has been
less studied than the estimation of the additive noise. The most
commonly used algorithm is EM-based which was suggested
in [8]. Here, we propose an alternative method, depicted in Fig.
2. It is an iterative technique and uses gVTS itself.

3.1. Workflow

If the characteristics of the microphone and its relative position
to the speaker are considered to be fixed, channel distortion will
not be a stochastic process. As such ΣH̆ may be set to zero and
the channel can be characterised only by the mean (µH̆ ). Using
a nonzero covariance matrix allows the uncertainty in the mean
estimate to be taken into account. However, forming a reliable
estimation for it is not straightforward.

We assume initially that the additive noise is absent, so

H̆t =
Y̆t

X̆t
⇒ µH̆ = E{H̆} = E{ Y̆u

X̆u
} (15)

where t and u denote frame index and the utterance, respec-
tively. For mathematical simplification, we suboptimally as-
sume that the random variables Y̆u and 1

X̆u
are uncorrelated

µH̆ = E{ Y̆u
X̆u
} = E{Y̆u} E{

1

X̆u
}. (16)

E{Y̆u} can be approximated using sample mean as follows

E{Y̆u} ≈
1

T

T∑
t=1

Y̆t (17)

where T indicates the number of frames of the utterance. Based
on the law of large numbers, the larger the T , the better the
estimate. Now, E{ 1

X̆u
} should be calculated. In this manner,

E{X̆u} may be estimated using the GMM of the clean model

E{X̆u} ≈
M∑
m=1

px̆(m) µX̆m . (18)

If the utterance is long enough with adequate phonetic diversity,
the mean of the clean version would be close to the global mean
of the clean speech. Using Jensen’s inequality

E{ 1

X̆u
} ≥ 1

E{X̆u}
. (19)

Assuming (again suboptimally) that the equality in (19) holds

µH̆ ≈
1
T

∑T
t=1 Y̆t∑M

m=1 px̆(m) µX̆m
. (20)

This runs the risk of underestimation of H̆ but provides a prac-
tical framework for estimating the channel. It should also be
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Figure 2: Workflow of the proposed channel estimation method.

noted that making error in scale and bias, namely aµH̆ + b, is
tolerable as they do not change the WER.

3.2. Effect of Additive Noise

Now, let us extend (15) to the case where additive noise exists

E{Y̆u}
E{X̆u}

= E{
(
H +

Wu

Xu

)α} ≈ µH̆ + E{W̆u

X̆u
} (21)

where H and W
X

are assumed to be uncorrelated. This intro-

duces an error term, E{ W̆u
X̆u
}, which is inversely proportional

to SNR and leads to overestimation (since it is always posi-
tive). To deal with this term, the additive noise should be at-
tenuated. Speech enhancement algorithms may seem useful but
bring about the problem of distorting speech in the sense that
the enhanced signal will no longer be consistent with the back-
ground statistical model of the clean speech (GMMX̆ ).

To this end, we suggest an iterative algorithm illustrated in
Figure 2. First, the channel estimate is initialised using (20).
Since at this stage the channel noise is not available, the older
version of gVTS (gV TS1) is used which only compensates for
the additive noise. Let Z = X̆H̆ , which encapsulate X̆ and
H̆ into one variable. Now gV TS1 aims at alleviating the ad-
ditive noise and finding Ẑ. In this regard, GMMZ should be
computed through adapting the GMMX̆ using H̆

Z ∼
M∑
m=1

pX̆(m) N (z; H̆d µ
X̆
m, H̆d ΣX̆m H̆T

d ). (22)

where H̆d is diag[µH̆ ]. This process attenuates the additive
noise and pushes the utterance closer to the background clean
model in a statistical sense (i.e., likelihood is increased). It al-
lows for a better channel noise estimation even in the clean con-
dition because (18) will hold more closely. The gVTS1 output,
Ẑ, would be an approximation for X̆H̆ . As such an estimate
for the channel frequency response can be formed using (20)
for the the next iteration.

Fig. 3 illustrates the estimated frequency response versus
the target (ground truth) values. As seen, the proposed approach
shows a great potential for blindly capturing the trend and local
shape of the channel. However, in some cases like Fig. 3 (b)
and (c), despite capturing the overall trend, local estimates are
inexact. In the next subsection we briefly review the causes of
error for future optimisations.



  

0 5 10 15 20
25

20

15

10

5

0

5

10

A
m

p
li
tu

d
e
 (

d
B

)

(a)

Target
Estimate

0 5 10 15 20
6
4
2
0
2
4
6
8

10

(b)

0 5 10 15 20
4

2

0

2

4

6

8

A
m

p
li
tu

d
e
 (

d
B

)

(c)

0 5 10 15 20
5

0

5

10

15

20

(d)

0 5 10 15 20
Filter Index

25

20

15

10

5

0

5

10

A
m

p
li
tu

d
e
  

(d
B

)

(e)

0 5 10 15 20
Filter Index

25
20
15
10

5
0
5

10
15

(f)

Figure 3: Blind channel estimation based on the proposed
method for 6 waves from the test set C of the Aurora-4 [24].
Target channel response was computed through comparing the
noisy wave (Y ) with its clean counterpart (X) from test set A.
Underestimation is due to Jensen’s inequality in (19).

3.3. Difficulties with the Proposed Approach
In addition to earlier mentioned issues, (18) implicitly assumes
that the channel used in recording the training data has a flat fre-
quency response and this is not necessarily the case. Moreover,
the frame length (25 ms) may not be longer than the effective
length of the impulse response of the channel in the time do-
main. As such the frequency resolution will be insufficient for
resolving the channel frequency response. In such case even
target values in Fig. 3 are inaccurate as they are computed us-
ing short-term analysis (25 ms). Finally, averaging in (17) and
(18) is performed across all frames, both speech and non-speech
ones. At the non-speech segments where X = 0, channel con-
tribution will be zero, too. As a result, such frames not only do
not provide any useful information as far as channel estimation
is concerned but also allow the additive noise to further over-
shadow the channel estimation process. So, ideally, for channel
estimation only the speech segments should be considered.

4. Experimental Results
ASR experiments were carried out on Aurora-4 [24]. HMMs
were trained with 16 components per mixture and all acous-
tic models were standard phonetically state-clustered triphones
trained from scratch using a standard HTK regime [25]. Decod-
ing was performed with standard 5k-word WSJ0 bigram lan-
guage model. The evaluation set of Aurora-4 consists of 14
test sets, grouped into 4 subsets: clean, (additive) noisy, clean
with channel distortion, noisy with channel distortion, referred
to as A, B, C, and D, respectively. Aurora-4 has two extra train-
ing sets for multi-style training, namely Multi1 and Multi2.
Training data in the former is contaminated with only additive
noise and in the latter by both additive noise and channel dis-
tortion. Cepstral mean normalisation and GMN (for gVTS fea-
tures) were applied. The feature vector is augmented by c0,
delta and acceleration coefficients. M was set to 256 and addi-
tive noise was estimated using the first and last 20 frames.

4.1. Discussion
It should be noted that the gVTS a priori assumes that the signal
is corrupted by both additive and channel noises whereas this
may not be the case. The ideal compensation process should
not distort the signal and worsen the results when either of the

noises is not present. Most of the robust methods (if not all) in-
duce extra distortion in the clean condition and return a poorer
results than the baseline. Test sets A, B and C are particularly
useful to evaluate the parametrisation process from this view-
point. For instance, for test set A, the gVTS should be as good
as the baseline (MFCC) or for test set B, gVTS2 (this paper)
should be as accurate as gVTS1 (older version). The results re-
ported in Table 1 show that gVTS2 passes this test successfully.
For example, in the case of test set A not only it does not worsen
the results in comparison with MFCCs but also returns a lower
WER. For test set B the results of gVTS2 are almost as good as
gVTS1 unless the channel estimation process is over-iterated.

Performance-wise, the proposed channel estimation algo-
rithm results in a remarkable improvement for Test Set C. The
absolute WER is reduced from 21.1% to 14.4% which is equiv-
alent to about 30% relative error reduction. At the same time,
for test set B, the performance is almost kept to the same level.
The optimum number of iterations (n in gVTS2-α-n at Table 1)
for estimating the channel is empirically found to be 2 or 3.

Comparing the results with multi-style training which usu-
ally constitutes the upper bound for the performance of the
clean-trained systems in the noisy condition is important, too.
As seen, on average the performance of the overall system is not
far from this limit, especially if the Ave2, in which all the test
sets have the same weight, is taken into account. For test set C,
however, the proposed method returns up to 26% relative higher
performance compared with multi-style (Multi2) results which
is a significant gain given that it has been achieved blindly, at
low computational cost and without any stereo data.

Table 1: WER for Aurora-4 (HMMs trained on clean data).

Feature A B C D Ave1 Ave2

MFCC-Clean 6.8 33.4 23.8 50.2 38.0 28.6
MFCC-Multi1 9.0 18.0 23.7 35.4 25.2 21.5
MFCC-Multi2 10.0 17.2 19.6 31.2 23.0 19.5
gVTS1-0.05 6.5 19.9 21.1 37.0 26.6 21.3
gVTS2-0.05-0 6.6 20.3 16.7 35.6 25.6 19.8
gVTS2-0.05-1 6.5 20.9 15.9 35.0 25.6 19.6
gVTS2-0.05-2 6.5 20.8 14.4 35.1 25.5 19.2
gVTS2-0.05-3 6.6 21.3 15.0 35.3 25.8 19.5
gVTS2-0.075-2 7.0 20.8 15.2 35.1 25.6 19.5
gVTS2-0.1-2 7.4 20.3 15.7 34.9 25.3 19.6

Ave1 = A+6B+C+6D
14

Ave2 = A+B+C+D
4

5. Conclusion
In earlier work, we derived VTS equations assuming that the log
nonlinearity is substituted by generalised logarithmic function
(GenLog). We called this approach generalised VTS (gVTS).
GenLog has an extra parameter which affects the statistical dis-
tribution of the features and can improve the performance in
both clean and noisy conditions. In the previous formulation of
gVTS, it was assumed that the signal is only distorted by the
additive noise. In this paper all the equations were re-derived
assuming the presence of both additive and channel noises. In
addition, a novel iterative approach for channel estimation was
proposed. The experimental results in LVCSR task (Aurora-
4) show significant gains in recognition accuracy without no-
ticeable performance loss when either additive or channel noise
does not exist. In future work we plan to extending the gVTS to
other features which use power transformation and also to fur-
ther improve the newly proposed channel estimation technique.
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