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ABSTRACT 
 
In this paper we present a novel feature extraction algorithm 
based on group delay function for robust speech recognition. 
The modified group delay function (MODGDF) is the main 
feature extraction method based on group delay function, 
generally used for robust speech recognition. The 
recognition tests indicate this feature does not provide 
notably better results in the presence of additive noise in 
comparison with MFCC. In the presence of convolutional 
noise, the performance of MODGDF is considerably lower 
than MFCC. The method proposed in this paper is simple 
and makes more efficient utilization of the high resolution 
property of GDF. It is formed from three main parts which 
are signal modeling, GDF computation based on extracted 
model, and compression. The recognition results obtained 
over AURORA 2.0 task indicate its superior performance in 
comparison with MODGDF and MFCC. 
 

Index Terms— Robust speech recognition, group delay 
function, signal modeling, compression 
 

1. INTRODUCTION 
 
It is generally accepted that phase spectrum does not play a 
significant role in speech processing. The majority of 
algorithms in this field are only focused on the magnitude 
spectrum and relatively little attention has been paid to the 
phase spectrum. In the field of speech enhancement, it is 
only the magnitude spectrum that is modified. The phase 
spectrum of the noisy signal is directly transferred to the 
output with no change, i.e. in the end of the process, 
enhanced magnitude spectrum is combined with the phase 
spectrum of the noisy signal and the enhanced signal is 
synthesized. This is also true for speech recognition, where 
most of the feature extraction algorithms only utilize the 
magnitude spectrum and discard the phase spectrum. 

The aversion of using phase spectrum in speech 
processing originated from two main reasons. First, because 
of phase wrapping, processing and interpreting the phase 
spectrum become very complicated. It appears that phase-
based signal processing is not as mature as magnitude-based 

signal processing, owing to this phenomenon. The second 
reason for avoiding phase spectrum is the existence of some 
well-known perceptual experiments that demonstrate the 
phase spectrum does not carry a noteworthy deal of 
intelligibility information [1]-[4]. It is shown that the speech 
phase spectrum has significant amount of intelligibility 
information only in such frames as long as one second [3], 
[4]. However, due to the non-stationarity of speech signal, 
long frames are not applicable. Hence, there is no attraction 
for researchers to directly work on the phase spectrum of 
large frames. 
 Liu, He, and Palm [5] have conducted a significant 
research, studying the importance of phase spectrum in 
speech recognition. Their human-based speech recognition 
experiments showed that the intelligibility of the phase-only 
reconstructed speech in frames longer than 128 ms becomes 
more than that of the magnitude-only reconstructed speech. 
Alsteris and Paliwal [6], [7] in a similar framework showed 
that in case of applying a suitable window (rectangular 
window), even in short frame lengths such as 32 ms, the 
intelligibility of phase-only reconstructed speech improves 
and becomes comparable with that of the magnitude-only 
reconstructed speech.  

Shi, Modirshanechi, and Aarabi [8] investigated the 
importance of the phase spectrum in human speech 
recognition. They showed that although the role of the phase 
spectrum in high SNRs is not significant, in low SNRs, it 
has a remarkable influence on the recognition rate. They 
combined the magnitude spectrum of noisy signals with the 
phase spectrum of clean signals and observed that in lower 
SNRs clean phase spectrum further improves the 
intelligibility of noisy signal. They claimed that this 
observation proves the importance of phase spectrum in 
robust speech recognition. However, it is obvious that the 
influence of clean signal information inserted in noisy 
signal, whether of magnitude or phase spectra, increases in 
lower SNRs and will cause further improvement on the 
quality and intelligibility of noisy signal. This arises some 
doubts about their justification in proving the importance of 
the phase spectrum in robust speech recognition. 
 As said before, due to phase wrapping, phase spectrum 
is not directly applicable yet. However, the researchers have 
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been trying to use its other representations. Group delay and 
instantaneous frequency are two major representations of the 
short-time phase spectrum. Group delay function has found 
applications in signal reconstruction [9], power spectrum 
estimation [10] and feature extraction for Automatic Speech 
Recognition [11], [12]. The modified group delay function 
(MODGDF) is a group delay-based feature proposed by 
Murthy and Gadde [11]. However, it does not seem to 
noticeably outperform MFCC. Particularly in the presence 
of convolutional noise, it results in notably lower 
recognition rates in comparison with MFCC. Incidentally, 
this feature has three parameters (will be discussed in the 
next section) which should be optimized for maximum 
recognition rate. It should be noted that line searching  over 
a large data base at four-dimensional space (three 
parameters as well as recognition rate) for a point which 
maximizes the recognition rate is a difficult task. 

In this paper, we will present a new feature extraction 
algorithm based on group delay function which results in 
higher recognition rates in comparison with traditional 
modified group delay-based feature i.e. MODGDF. In 
addition, this algorithm only has two parameters that can be 
simply optimized. The proposed method makes more 
efficient use of the high resolution property of GDF as well.  

This paper is organized as follows. In Section 2 we will 
briefly review the properties of group delay function and its 
shortcomings. In Section 3 the proposed algorithm will be 
introduced. Section 4 deals with the recognition tests results 
over AURORA 2.0 [13] task as well as their analysis and 
Section 5 concludes the paper. 
 

2. PROPERTIES OF GROUP DELAY FUNCTION 
 
Group delay function is defined as the negative derivative of 
continuous phase spectrum. It has two important properties 
i.e. additive and high resolution [10]. The additive property 
indicates if two functions convolve with each other in time 
domain (e.g. a channel impulse response and a signal), they 
will be added in group delay domain. High resolution 
property points to sharp peaks of the group delay function, 
which under specific conditions can be a high-resolution 
estimation of power spectrum [10].  

Although GDF has sharp peaks and consequently high 
resolution, it is not useful in case of many practical signals 
in which either zeros or poles get close to the unit circle. In 
case of speech signals, since zeros are close to the unit 
circle, the group delay function cannot successfully estimate 
the power spectrum. In fact, these zeros result in spurious 
peaks which mask the formants leading to a very poor 
estimation of power spectrum. To overcome this problem 
two methods have been proposed. Yegnanarayana and 
Murthy [10] proposed cepstral smoothing to eliminate the 
effects of zeros introduced by excitation component of the 
speech signal. The modified group delay function (MGDF) 
is a GDF computed through cesptral smoothing [10].  
Bozkurt and Couvreur [14] proposed chirp group delay 

function (CGDF) dealing with the aforementioned problem. 
This method involves two stages. First, zeros located outside 
the unit circle must be eliminated. This will reduce the 
speech signal to its minimum phase form. Then, the z-
transform is evaluated on a circle whose radius is greater 
than unity. The proposed radius in [14] is 1.12. This method 
has high computational overhead required to extract the 
zeros of the signal. 

Murthy and Gadde [11] proposed a feature based on 
modified group delay function. In this method, they further 
modified the modified group delay function in following 
form 
 

  .                   (1) 
 
where  is a new modified group delay function of x(n), 
the subscripts R and I denote real and imaginary parts, X(k), 
Y(k) and S(k) indicate the Fourier transform of x(n), nx(n) 
and cepstrally smoothed spectrum of | |, respectively, 
and sign is the sign of    . In the next stage, 
by taking Discrete Cosine Transform (DCT) the features 
(MODGDF) will be extracted from  . 

As seen, there are 3 parameters, α, γ, and sw that should 
be optimized for maximizing the recognition rate. sw is the 
window length in cepstral domain, used to remove the effect 
of the excitation component of speech signal which is the 
main reason of introducing zeros close to the unit circle. 
These zeros make the group delayed-based estimated power 
spectrum spiky and consequently worthless. α and γ are used 
to adjust the bandwidth and sharpness of the peaks 
(formants) as well as compression. In [12] the proposed 
value for α, γ, and sw are 0.3~0.4, 0.9, and 4~9, respectively. 
However, the question which arises here is that whether 
these values for aforementioned parameters lead to global 
maximum of the recognition rate in any database. In 
addition, do these values still remain optimum choices in the 
presence of additive and convolutional noises? Actually, 
line searching in 4-dimentional space (α, γ, sw, and 
recognition rate) is not an easy task. Furthermore, if an 
optimum point was found, there is no guarantee that this 
optimal choice, over different databases or in the presence 
of different noise types or SNRs, remains the same. Due to 
lacking theoretical insight into this feature, the 
aforementioned problem becomes more complicated.  

The recognition tests showed that the MODGDF 
features do not provide notably better results in comparison 
with MFCC [11], [12]. Moreover, as will be shown in Table 
1, in the presence of convolutional distortion, the 
performance of MODGDF is considerably lower than 
MFCC.   
 

3. THE PROPOSED METHOD 
 

In the previous section we discussed some of the 
shortcomings of MODGDF feature. In this section, we 



present our method, which does not suffer from the 
problems of MODGDF and leads to noticeably better 
recognition rates in comparison with MFCC in the presence 
of both additive and convolutional distortions.  

Figure 1 shows the block diagram of the proposed 
method. This algorithm consists of three main parts, i.e. 
signal modeling, GDF computation and compression. The 
speech signal does not pass the pre-emphasis block. After 
frame blocking and windowing, an Autoregressive (AR) 
model is extracted for each frame. In this stage, we have 
used LPC and Burg [16] methods. Then, based on the 
extracted model, the GDF is computed and subsequently, 
compressed into k2 elements through two-stage DCT. 
 

 

 
 

Fig. 1. Block diagram of the proposed method. 
 
 

Coupling the GDF with AR model provides the 
following advantages: 

1) The model will be AR; therefore, the effects of zeros 
which cause a noise-like GDF and mask the formants 
are highly alleviated.  

2) The bandwidth and sharpness of the formants will be 
adjusted by the use of an appropriate order for the 
AR model.  

As a result, this coupling provides more efficient utilization 
of the high resolution property of GDF in the power 
spectrum estimation. Figure 2 shows the GDF, modified 
GDF (MGDF), LPC and Burg power spectra, and GDFs 
calculated based on AR extracted models for a typical 
speech signal. 

Next step is compression of the GDF into a vector with 
12 (11~13) elements. Compressing the samples of a frame 

which typically has 256 or 512 elements into 12 samples by 
taking one-stage DCT drastically increases the compression 
loss. It is another problem of MODGDF feature that should 
be taken into consideration. Dealing with this issue, we do 
the compression in two stages. At first we compress the 
samples into k1 elements. Then, we compress these numbers 
of samples into k2 elements. It is clear that the value of k2 is 
around 12. For this, we must find the proper value for k1. To 
do this, we follow some guidelines from the MFCC feature 
extraction procedure. In MFCC, the samples of the power 
spectrum of each frame are first compressed as the energies 
of outputs of a number of filters (say 23). Accordingly, one 
may suppose the suitable value for k1 must be within this 
range. In addition, we expect the appropriate value for k1 to 
be larger than the number of filters in MFCC. The reason is 
that, in this case, there is no emphasis on a specific range of 
frequencies like that of mel-filter bank.  Our simulations 
show that 30 is a suitable choice for k1. However, it is not a 
critical decision and other values in this range can be used.  

It should be mentioned that this type of compression 
does not work for compressing the MODGDF and 
magnitude spectrum. It seems that the smooth structure of 
the GDF computed based on AR model makes this method 
work. Besides, we observed that compressing the power 
spectrum of AR model through taking two-stage DCT 
results in lower recognition rate in comparison with 
compressing the GDF. It is due to high resolution property 
of GDF that is employed more efficiently in this algorithm.   

There are other points that should be investigated. In 
[15], we have showed that Chebyshev window with 
dynamic range of 30 dB is almost the best choice for 
working with the phase spectrum. Phase-only reconstructed 
speech along with this window has the highest quality. 
Contrary to MODGDF, we observed that for the proposed 
method applying this window results in higher recognition 
rates, in comparison with the Hamming window.  

The last points that should be discussed here are the AR 
modeling method and its order. The proper order for an 8 
kHz-sampled speech is in the range of 8 to 12. We found 12 
a better choice, although like k1 it is not a critical choice. 
Here, we have used LPC and Burg methods [16] for AR 
modeling. LPC method determines the coefficients of a 
forward linear predictor by minimizing the prediction error 
in the least squares sense. It uses the autocorrelation method 
of autoregressive modeling to find the parameters. The Burg 
method estimates the reflection coefficients and uses them 
to estimate the AR coefficients recursively. The results show 
that Burg method leads to better recognition results, in 
comparison with LPC method. It should be noted that the 
computational load of Burg method is higher than LPC. So, 
the LPC could be considered as a more economic choice. 

We name the proposed method ARGDD because of AR 
model extraction, GD computation and Double DCT 
operation for compression. ARGDD1 and ARGDD2 in 
Table 1 and Figure 3 refer to employment of LPC and Burg 
methods, respectively. 
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4. RECOGNITION TESTS RESULTS AND THEIR 
ANALYSIS 

 
In all cases, the feature vector consists of 39 elements 
containing static coefficients which include C0 or log-energy 
as well as dynamic and acceleration coefficients. In MFCC 
computation, the pre-emphasis coefficient is 0.97 and the 
number of filters of mel-filter bank is 23, in the range of 64 
to 4000 Hz. For all the presented features, frame length and 
frame shift are set to 32 and 12 ms, respectively. Hamming 
window has been used in case of MFCC and MODGDF. For 
the proposed method, Chebyshev window with dynamic 
range of 30 dB have been used. We used HTK [17] to train 
and test the HMMs. In all of the features tested here, 
cepstral mean normalization (CMN) has been performed.   

As seen in Table 1 and Figure 3, the ARGDD results in 
interesting recognition rates over clean-trained AURORA 
2.0 task [12] in the presence of both additive (A and B test 
sets) and convolutional (C test set) distortions. The 
performance of our method is about 10% (absolute) or more 
above MFCC performance in SNRs of 5 dB and less on 
average. It is also has a notably higher performance in case 
of convolutional noise (C test set) compared with MFCC 
and especially MODGDF. Due to similarity of ARGDD1 
and ARGDD2 recognition results and trends, we just 
depicted the results of ARGDD2 in Figure 3 to increase the 
visibility and avoid cluttering. 

As it is shown in [11] and [12], for MODGDF, 
augmenting the feature vector with C0 will increase the 
recognition rate. However, in case of MFCC, augmenting 
the feature vector with logarithm of energy (log-energy) is a 
better choice.  Table 1 shows that using C0 is a relatively 
suitable choice for the proposed feature. However, we 
observed that the centralized log-energy along with ARGDD  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

results in higher recognition rates. As seen in Table 1, using 
centralized log-energy in case of ARGDD and MODGDF, 
results in higher recognition rate. It is not yet clear why this 
happenes. However, taking a look on the contradictory 
effect of centralizing the C0 in MFCC and MODGDF shows 
that the role and influence of appending the feature vector 
with energy or C0 is not identical among different front-
ends. In case of MODGDF, if the CMN includes C0, the 
recognition result will be higher, but for MFCC, excluding 
C0 from CMN leads to better recognition rate. In a similar 
manner, centralizing the log-energy, in case of MFCC 
feature decreases the recognition rate while in case of 
MODGDF and ARGDD improves the performance. As 
well, we observed that excluding C0 from CMN, similar 
with MFCC, results in higher recognition rate in case of 
ARGDD. 

 
Table 1. Average (0-20dB) word accuracy as percentage for 

the Aurora 2.0 Task 
 

 Test Set 
A 

Test Set 
B 

Test Set 
C 

MFCC-E 69.38 72.88 69.95 
MFCC-E* 65.30 70.35 63.55 
MFCC-C0(C0

+) 63.97 67.87 64.16 
MFCC-C0(C0

-) 64.36 66.97 70.73 
MODGDF-E 65.35 70.17 53.56 
MODGDF-E* 68.21 72.93 56.81 
MODGDF-C0(C0

+) 68.15 72.48 54.90 
MODGDF-C0(C0

-) 59.02 66.18 48.75 
ARGDD1-C0(C0

-) 69.68 69.13 70.82 
ARGDD2-C0(C0

-) 68.46 71.40 73.86 
ARGDD1-E* 74.87 75.84 69.68 
ARGDD2-E* 74.58 77.42 73.18 

 

   E* : Centralized log-energy 
   C0

+ : CMN included C0
 

   C0
- : C0

 excluded from CMN  

 
                                            (a)                                                                    (b)                                                                   (c)   

 

 
                                            (d)                                                                    (e)                                                                    (f)   

 
Fig. 2. (a) Group delay function, (b) LPC power spectrum, (c) Burg power spectrum, (d) modified group delay function, (e) GDF (LPC), 
(f) GDF (Burg). 



 
 
 
 
 
 

 
 

 
 
 

 
 
 
 
 

 
 
     
 
 
 
 
 
 
 

5. CONCLUSION 
 

In this paper we presented a novel feature extraction 
algorithm based on group delay function for robust speech 
recognition. The proposed algorithm, ARGDD, consists of 
three main parts, those are, AR signal modeling, GDF 
computation based on extracted model, and compression 
through two-stage DCT. This method, in comparison with 
the MFCC and MODGDF, has notably higher performance 
in the presence of both additive and convolutional noises. Its 
high recognition rates on AURORA 2 task shows the 
noteworthy potentials of group delay function and phase 
spectrum to be used in speech recognition. Decreasing the 
loss of compression through applying more efficient 
methods and embedding other blocks which could increase 
the recognition rate are two avenues for further exploration 
and future works. 
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Fig. 3. The recognition rates of the ARGDD2-E*, MODGDF-E*, and MFCC-E versus SNR on the AURORA 2.0 task (the best cases for 
each feature based on Table 1). (a) Test set A (includes subway, babble, car, and exhibition additive noises), (b) Test set B (includes 
restaurant, street, airport, and train-station additive noises), (c) Test set C (includes subway and street convolutional noises).


