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Abstract
Speech recognition systems are often highly domain de-

pendent, a fact widely reported in the literature. However the
concept of domain is complex and not bound to clear criteria.
Hence it is often not evident if data should be considered to be
out-of-domain. While both acoustic and language models can
be domain specific, work in this paper concentrates on acoustic
modelling. We present a novel method to perform unsupervised
discovery of domains using Latent Dirichlet Allocation (LDA)
modelling. Here a set of hidden domains is assumed to exist
in the data, whereby each audio segment can be considered to
be a weighted mixture of domain properties. The classification
of audio segments into domains allows the creation of domain
specific acoustic models for automatic speech recognition. Ex-
periments are conducted on a dataset of diverse speech data cov-
ering speech from radio and TV broadcasts, telephone conver-
sations, meetings, lectures and read speech, with a joint training
set of 60 hours and a test set of 6 hours. Maximum A Posteriori
(MAP) adaptation to LDA based domains was shown to yield
relative Word Error Rate (WER) improvements of up to 16%
relative, compared to pooled training, and up to 10%, compared
with models adapted with human-labelled prior domain knowl-
edge.
Index Terms: domain discovery, latent dirichlet allocation,
adaptation, speech recognition

1. Introduction
Recently, new applications and domains are becoming the tar-
get of research in Automatic Speech Recognition (ASR), as the
existing systems increase their accuracy. This has opened the
issue on how to scale up existing systems when new domains
are incorporated as target data, for instance “found data”, such
as media and historical audio archives. In this situation, training
acoustic models for an unknown domain, like different YouTube
recordings, can be infeasible if the origin of the target speech
can not be properly assessed, and the loss of accuracy is large
due to wrong modelling decisions.

Well–tailored single domain systems, where training data
that properly matches the target recognition data is available,
are mostly used in current speech recognisers. These do-
main dependent models have been usually trained via Max-
imum Likelihood (ML) if a sufficiently large amount of do-
main data existed or using adaptation techniques such as Maxi-
mum A Posteriori [1], Maximum Likelihood Linear Regression
(MLLR) [2] or Cluster Adaptive Training [3]. For more recent
Deep Neural Network (DNN)–based systems, domain adapta-
tion is also possible with linear transformations, conservative
training and subspace methods [4] with frameworks such as
Multi–Level Adaptive Networks (MLAN) [5] or Deep Maxout
Networks (DMN) [6].

An important issue when dealing with highly diverse
speech data is the difficulty to appropriately categorise every
speech input within a particular domain, especially the case
with newly discovered data. Even when domain categories have
been given manually by humans, this may be inaccurate or there
may be hidden characteristics in the audio that can further sub-
divide these categories or cross across several of the predefined
domains. Developing the ability of discovering these new and
hidden acoustic domains would greatly enhance the possibility
of using well–targeted specific domain models in ASR. How-
ever, as most speech recognition tasks assume a single domain
or well differentiated domains, the task of unsupervised discov-
ery of acoustic domains in speech data has been of less interest
so far. This paper proposes to open new areas for research in
multi–domain ASR by treating speech data as a set of docu-
ments where latent domains exist and can be discovered using
Latent Dirichlet Allocation (LDA) models.

LDA is an statistical approach to discover latent topics in
a collection of documents in an unsupervised manner [7]. It is
mostly used in Natural Language Processing (NLP) for the cat-
egorisation of text documents, but it has been used for audio and
image processing as well. In audio tasks, LDA has been used
for classifying unstructured audio files into onomatopoeic and
semantic descriptions with successful results [8, 9]. Building
on this knowledge, this work proposes to use LDA for domain
adaptation in ASR tasks.

This paper is organised as follows: Section 2 will give an
overview of LDA modelling in its original proposal for topic
modelling. Then, Section 3 will describe the proposed use
of LDA models for unsupervised domain discovery in speech
data. Section 4 will present the experimental setup used for
multi–domain speech recognition, with Section 5 detailing the
obtained results. Section 6 gives the conclusions to this work.

2. Latent Dirichlet Allocation
Latent Dirichlet Allocation (LDA) [7] is an unsupervised prob-
abilistic generative model for collections of discrete data. It
aims to describe how every item within the collection is gener-
ated, assuming that there are a set of hidden topics and that each
item is modelled as a finite mixture over those topics. Also, an
infinite mixture over an underlying set of topic probabilities is
used to model each topic [7]. LDA is mostly used for topic
modelling of text corpora, however, the model can be applied
to other tasks, such as object categorisation and localisation in
image processing [10], automatic harmonic analysis in music
processing [11] or acoustic information retrieval in unstructured
audio analysis [9].

In the context of text corpora, a dataset is defined as a
collection of documents and each document is a collection of
words. Given a vocabulary of size V , each word is represented
by a V –dimensional binary vector. It is assumed that the docu-
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Figure 1: Graphical model representation of LDA

ments are generated using the following generative process:

1. For each document dm,m ∈ {1...M}, choose a K–
dimensional topic weight vector θm from the Dirich-
let distribution with scaling parameter α: p(θm|α) =
Dir(α)

2. For each word wn, n ∈ {1...N} in document dm

(a) Draw a topic zn ∈ {1...K} from the multinomial
distribution p(zn = k|θm)

(b) Given the topic, draw a word from p(wn|zn, β),
where β is a V ×K matrix and
βij = p(wn = i|zn = j, β)

Other assumptions include the bag–of–words property of
the documents and the fixed and known dimensionality of the
Dirichlet distribution K (and thus the dimensionality of the
topic variable z)

The graphical representation of LDA model is shown at
Figure 1, a three level hierarchical Bayesian model. In this
model, the only observed variable is w and the rest are all la-
tent. α and β are corpus level parameters, θm are document
level variables and zn, wn are word level variables. The gener-
ative process is described formally as:

p(θ, z,w|α, β) = p(θ|α)

N∏
n=1

p(zn|θ)p(wn|zn, β) (1)

The posterior distribution of the latent topic variables given the
words and α and β parameters is:

p(θ, z|w, α, β) =
p(θ, z,w|α, β)

p(w|α, β)
(2)

Computing p(w|α, β) requires some intractable integrals. A
reasonable approximate can be acquired using variational ap-
proximation which is shown to work reasonably well in various
applications [7]. The approximated posterior distribution is:

q(θ, z|γ, φ) = q(θ|γ)

N∏
n=1

q(zn|φn) (3)

where γ is the Dirichlet parameter that determine θ and φ is the
parameter for the multinomial that generates the topics.

Training tries to minimise the Kullback–Leiber divergence
(KLD) [12] between the real and the approximated joint proba-
bilities (equations 2 and 3) [7]:

argmin
γ,φ

KLD
(
q(θ, z|γ, φ) || p(θ, z|w, α, β)

)
(4)

Other training methods based on Markov–Chain Monte-Carlo
is also proposed, like Gibbs sampling method [13].

3. Unsupervised Domain Discovery
The proposed technique uses an LDA model to discover hid-
den and latent acoustic domains in multi–domain speech data.
Since LDA is for collections of discrete data (such as text cor-
pora) [7], every speech segment of length T frames, x =

{x1, ...,xt, ...,xT }, is represented as a set of discrete symbols
to support modelling within this framework. For that purpose,
the n–dimensional audio frames, xt ∈ Rn, are quantised into
a dictionary of V acoustic “words”, x̄t ∈ {1...V } [8]. First
a Gaussian Mixture Model (GMM) is trained using Expecta-
tion Maximisation (EM) and mix–up procedure to reach the de-
sired codebook size V (enforcing the co–variance matrix to be
identity, equivalent to LBG–VQ [14]). Then the means of the
Gaussian components are used to create the codebook and quan-
tise the audio frames into discrete symbols. The assignment of
frame xi to codebook index j is performed using:

x̄t = argmin
j

||xt −mj || , j ∈ {1...V } (5)

where mj is jth mixture component’s mean vector.
To reconcile this with the LDA terminology described in

Section 2, in this work each audio segment is a “document”
and each codified audio frame is a “word”. All the audio seg-
ments (now “documents”) then create a whole “collection” or
“corpus”.

Once all the audio frames are converted to discrete “words”,
the parameters of the LDA model using K domains are esti-
mated on the M audio segments from the training data using
variational EM. The domain of each quantised audio segment x̄
is then given by the domain with the highest value of the poste-
rior Dirichlet parameter γ for that segment.

Domain(x̄) = argmax
j

γj , j ∈ {1..K} (6)

Based on the estimated parameters from the training set,
Dirichlet parameters γ can be inferred for the test set segments
as well. With every segment in both train and test sets asso-
ciated to a hidden domain, it is possible to perform training
and/or adaptation with the usual techniques. Acoustic mod-
els can be trained via Maximum Likelihood (ML), or domain
specific models can be adapted via MAP or MLLR, in case of
GMM/HMM systems.

4. Experimental setup
To evaluate the proposed domain discovery and adaptation
method in a multi–domain and diverse ASR task, a dataset of 6
different types of data was chosen from the following sources:

• Radio (RD): BBC Radio4 broadcasts on February 2009.

• Television (TV): Broadcasts from BBC on May 2008.

• Telephone speech (CT): From the Fisher corpus1 [15].

• Meetings (MT): From AMI [16] and ICSI [17] corpora.

• Lectures (TK): From TedTalks [18].

• Read speech (RS): From the WSJCAM0 corpus [19].

A subset of 10h from each domain was selected to form the
training set (60h in total), and 1h from each domain was used for
testing (6h in total). The selection of the domains aims to cover
the most common and distinctive types of audio recordings used
in ASR tasks.

Two types of acoustic features were used: First, 13 PLP
features plus first and second derivatives for a total of 39–
dimensional feature vectors; and second, a 65–dimensional fea-
ture vector concatenating the 39 PLP features and 26 bottle-
neck (PLP+BN) features extracted from a 4–hidden–layer DNN
trained on the full 60 hours of data. 31 adjacent frames (15

1All of the telephone speech data was up–sampled to 16 kHz to
match the sampling rate of the rest of the data.
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frames to the left and 15 frames to the right) of 23 dimensional
log Mel filter bank features were concatenated to form a 713–
dimensional super vector; Discrete Cosine Transform (DCT)
was applied to this super vector to de–correlate and compress
it to 368 dimensions and then fed into the neural network. The
network was trained on 4,000 triphone state targets and the 26
dimensional bottleneck layer was placed before the output layer.
The objective function used was frame–level cross–entropy and
the optimisation was done with stochastic gradient descent and
the backpropagation algorithm. DNN training was performed
with the TNet toolkit [20] and more details can be found at [21].

For both types of features, baseline ML GMM–HMM mod-
els were trained using HTK [22] with 5–state crossword tri-
phones and 16 gaussians per state. The language model used
was based on a 50,000–word vocabulary and was trained by
combination of language models from the 6 domains, with inter-
polation weights tuned using an independent development set.

4.1. Baseline results
Table 1 presents the baseline Word Error Rate (WER) results for
the in–domain maximum–likelihood (ML) model trained with
the pooled 60 hours of all domains, plus the results of ML in–
domain models each trained with 10 hours of in–domain data. It
also includes the MAP adapted models from the pooled model
to each domain. Experiments were conducted using PLP and
PLP+BN features. The results using ML training on the limited
in–domain data underperformed MAP adaptation on such data,
which set MAP as a preferred setup for domain adaptation.

Table 1: WER (%) of baseline models
Features Model RS RD TK CT MT TV Total

PLP
ML 17.3 18.4 34.1 46.6 44.0 51.1 36.0
ML Domain 16.9 19.1 35.1 44.4 44.0 52.9 36.3
MAP 14.6 16.8 31.8 43.5 40.4 49.6 33.6

PLP+BN
ML 13.0 13.3 23.5 33.5 32.2 42.0 26.8
ML Domain 12.6 14.0 25.0 34.3 33.2 44.0 27.9
MAP 12.1 12.8 23.1 32.5 30.6 41.5 26.2

5. Results
The experiments performed aimed to evaluate two aspects of the
proposed LDA modelling for unsupervised domain discovery.
First, if LDA could be successfully used to find hidden domains
and if these domains represented the hidden characteristics of
the audio. Second, once hidden domains had been identified, if
domain adaptation could be applied on them and improvements
in ASR performance were achieved over the baselines.

5.1. Unsupervised domain discovery

For using LDA models, as described in Section 2, two param-
eters had to be initially set up. First, the number of domains
K to be found had to be decided prior to the training. Also,
since the audio frames needed to be quantised, the size of the
codebook V also needed to be defined. For this end, a set of
experiments were conducted with different codebook sizes and
number of domains. Codebooks of size 128 up to 8,192 were
used and given a codebook, different LDA models with a vary-
ing number of domains from 4 to 64 were estimated [23, 24]
using the training data described in Section 4.

Since these identified domains were latent, there was no
ground truth to verify them at this stage. An initial way of eval-
uating how the different latent domains behaved was by mea-
suring the distribution of the data, according to manual labels,
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Figure 2: Amount of data for each discovered domain (K = 8)
from the labelled domains using a codebook size of 2,048

which was included in each hidden domain. Figure 2 presents
this distribution for an acoustic codebook of size 2,048 and 8
hidden domains. From this Figure, it is possible to see how
telephone speech was separated into two different hidden do-
mains (D1 and D3), while meeting speech was mostly assigned
to a unique hidden domain (D7). Other manually labelled do-
mains, such as Radio and Television broadcasts were scattered
across hidden domains (D2, D4 or D8), indicating the presence
of previously unseen domains within these types of data.

Following this, KL divergence [12] was proposed as an ap-
propriate metric to measure the consistency of the hidden topics
discovered by LDA. This measured how the distributions of data
in latent domains, as in Figure 2, in different sets, for instance
training and testing data, were different with each other:

KLD(P ||Q) =
∑
i

P (i) ln
P (i)

Q(i)
(7)

where P and Q are the distributions for training and test data.
To compute the divergence, since we deal with counts in the
distributions and some counts can be zero, the distributions are
smoothed by discounting 3% of the total mass and distributing
it across zero counts.

Figure 3 shows the divergence values of different configu-
rations. Low values of divergence indicated a more consistent
set of hidden domains found by LDA modelling and, thus, were
preferred over configurations with higher values. In terms of
codebook size, codebooks of 2,048 and 8,192 symbols resulted
in lower divergence. For the number of domains, increasing to
more than 12 resulted an increase in divergence.

5.2. Domain adaptation

For the evaluation of the possibilities offered by the unsuper-
vised discovery of domains in ASR, MAP domain adaptation
was performed to each of these new domains. The experiments
were conducted with domains of size 4, 6, 8, 10 and 12 and a
codebook of acoustic words of size 2,048. Each MAP adapted
domain specific model was used to decode the corresponding
speech segments in the test set that were assigned to that do-
main. Figure 4 shows the overall WER on the test set with dif-
ferent number of topics using both types of features, PLP and
PLP+BN. The lowest WER values, 30.4% for PLP features and
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Figure 3: KL divergence of training and test set topics

25.4% for PLP+BN, were achieved with 8 domains for both
types of features, which was 16% and 5% relative improve-
ment over their respective ML baselines. Comparing with MAP
adaptation to human–labelled domains the relative WER reduc-
tion was 10% and 3%. The improvements in WER vanished for
more than 8 hidden domains, indicating that using larger num-
bers of domains were not beneficial for this task.

Table 2 presents the breakout of the results using 8 hid-
den domains across the manually labelled domains. Improve-
ments occur across all of these domains, indicating that the LDA
model can benefit all types of speech in this setup. The domains
that achieved the highest gains from using LDA MAP adapta-
tion (with PLP feature) were read speech, telephone speech and
TV broadcasts, with relative WER reductions of 14%, 12%,
10% respectively compared to MAP adaptation on the manu-
ally labelled domains. The lowest gain, 4% relative, occurred
on meeting speech. Similarly, with PLP+BN features telephone
speech, lectures and read speech benefited the most, with rela-
tive WER reduction of 5%, 4% and 2% respectively.

Table 2: WER (%) of LDA MAP Models (K = 8)
Features Model RS RD TK CT MT TV Total

PLP MAP 14.6 16.8 31.8 43.5 40.4 49.6 33.6
LDA MAP 12.5 15.3 29.1 38.2 38.5 44.7 30.4

PLP+BN MAP 12.1 12.8 23.1 32.5 30.6 41.5 26.2
LDA MAP 11.9 12.8 22.3 31.1 31.0 41.0 25.4

Finally, Table 3 shows the WER across the hidden domains
for both types of features with LDA MAP models. The most
relevant feature of these domains, in terms of WER, was that
the domains of low WER (like Read speech) or high WER (like
TV data) had been broken up in different hidden domains and
hence, WERs across hidden domains were evenly distributed.

Table 3: WER (%) of LDA MAP Models (K = 8) across hid-
den domains

Features D1 D2 D3 D4 D5 D6 D7 D8 Total
PLP 37.3 34.9 39.7 39.2 24.6 17.1 38.7 22.9 30.4
PLP+BN 33.9 29.2 30.4 32.8 19.7 12.6 30.9 19.2 25.4

6. Conclusions
A novel technique based on Latent Dirichlet Allocation (LDA)
has been proposed to discover latent domains in highly–diverse
speech data in an un–supervised manner. The data set consisted
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Figure 4: WER (%) of LDA MAP adapted models with differ-
ent number of topics

of data from TV and radio shows, meetings, lectures, talks and
telephony speech with a 60–hour training set and 6–hour test
set. It was assumed that there are a set of hidden domains and
each audio segment is a mixture of different properties of those
hidden domains with different weights. LDA models were used
to discover the latent domains and then these domains were used
to perform Maximum A Posteriori (MAP) domain adaptation.
Results showed relative improvement of up to 16% over the
baseline Maximum Likelihood trained models and up to 10%
over the MAP adapted models to human labelled domains with
the LDA discovered domains.

The bag–of–words assumption in LDA model does not take
the order of words into account. In applying LDA for image
processing, there are some variants of the original LDA model,
such as Spatial LDA [25] which encodes spatial structure with
the visual words. A temporal variant of LDA could better han-
dle the temporal nature of speech and needs to be investigated
as a future work. Also applying the current technique on big-
ger and/or less diverse data set needs to be verified to see what
would be the new discovered domains and how they are related
to domain adaptation. Newer sets of features, better targeted
to describe background acoustic characteristics [26], could also
provide an improvement over PLP features, which are known to
describe well phonetic and speaker information.
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